CVPR
gprenen

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017

018

019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037

CVPR 2025 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

PLLM: Pseudo-Labeling Large Language Models for CAD Program Synthesis

Anonymous CVPR submission

Paper [D ik

Abstract

Recovering Computer-Aided Design (CAD) programs from
3D geometries is a widely studied problem. With the re-
cent advancements in large language models (LLMs), sev-
eral works have explored leveraging their strong symbolic
reasoning capabilities for CAD program synthesis. How-
ever, existing methods that train LLMs to generate CAD
programs rely on supervised learning, whereas ground-
truth CAD program datasets are often unavailable in prac-
tice. We introduce PLLM : Pseudo-Labeling Large Lan-
guage Models for CAD Program Synthesis, an unsupervised
self-training framework that fine-tunes LLMs for CAD pro-
gram generation without requiring paired supervision. Our
method takes as input a pre-trained LLM capable of gen-
erating CAD programs and a 3D shape dataset. The model
iteratively refines the pre-trained LLM’s performance on the
new dataset, achieving improved program synthesis quality
without access to ground-truth CAD programs.

1. Introduction

Computer-Aided Design (CAD) is the industry standard for
3D modeling in engineering and manufacturing. Design-
ers typically construct models through a sequence of para-
metric operations, which, when executed, produce bound-
ary representations (B-reps) of 3D geometry. The inverse
problem of recovering a CAD program from a given shape
is also extensively studied. Recovering the program enables
semantic editing, programmatic modification, and compact
representation of 3D models.

Previous approaches address this inverse problem by
training lightweight neural networks to predict CAD opera-
tions and their corresponding parameters [1, 5, 11, 52, 55].
More recently, large language models (LLMs) have been
explored for this reverse-engineering task due to their strong
symbolic reasoning abilities and rapid progress in program
synthesis [27, 30, 34, 43, 44]. However, existing methods
all rely on supervised learning that requires ground-truth
CAD programs. This reliance introduces two major chal-
lenges: (1) when applying a model trained on one dataset

to another without ground-truth programs, fine-tuning be-
comes difficult due to the absence of supervision; and (2)
the existence of multiple CAD programming languages
makes it challenging for a model trained on one grammar
to generalize to another.

In this work, we introduce a new framework to address
this problem. Formally, our system takes as input a pre-
trained LLM p(z | x, £) that generates a CAD program z
in language £ from a shape z, where z is sampled from
a distribution S. Given another distribution of shapes S*,
our goal is to fine-tune the pre-trained model to adapt it
to the new domain. The main challenge is that the model
may perform poorly on S* because it is not well adapted to
this distribution. Moreover, $* may lack ground-truth CAD
programs or include programs not expressed in £, making
direct supervised fine-tuning infeasible.

Our key observation is that the pre-trained LLM inher-
ently possesses the ability to generate programs for shapes
from the new domain in its original language £. However,
the generated results may be suboptimal. To address this,
our method samples programs from the pre-trained model,
executes them, and compares the outputs with the target
inputs. This process enables the model to learn from its
best-performing results, where the best programs serve as
pseudo-labels that progressively improve the model through
iterative self-training. Specifically, we use CAD-Recode
[34], which is trained on the DeepCAD dataset [49] and
outputs programs in the CadQuery language, as our pre-
trained LLM. We then fine-tune it on the ABC dataset [25],
a widely used benchmark that does not include ground-truth
CAD programs.

In summary, we propose a novel method to fine-tune ex-
isting LLMs for improved CAD program synthesis for new
domain in the absence of ground-truth supervision. Our key
contributions are as follows:

* We introduce PLLM, a self-training framework that fine-
tunes pre-trained LLMs on unlabeled 3D datasets by
jointly leveraging search and distillation to discover high-
quality pseudo programs.

* We develop a method to sample output programs from
LLMs and apply programmatic edits to generate diverse

CVPR
raren

038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072

073
074
075
076
077
078

CVPR
gprenen

079
080
081
082
083

084

085

086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110

111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

CVPR 2025 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

variations, enriching supervision and improving model
robustness across training iterations.

e We validate our method by fine-tuning CAD-Recode
(pre-trained on DeepCAD) on the ABC dataset—showing
improvements in geometric fidelity.

2. Related Works
2.1. Self Training

Our work primarily belongs to the broader category of un-
supervised and weakly-supervised learning [7, 46]. For
these families of tasks, many approaches resort to general-
purpose policy gradient reinforcement learning [32, 38, 39,
46, 57].However, as CAD programs are generally not dif-
ferentiable, reinforcement learning methods are not appli-
cable. Instead, we adopt a self-training approach, which
has been widely used to improve model performance in
weakly-supervised settings [31, 35, 53]. Recent advances
further show that self-training and data-augmentation-based
methods can enhance neural models across various do-
mains [18, 22, 58].

In the domain of visual program synthesis, self-training
has emerged as an effective strategy for learning in the ab-
sence of ground-truth program supervision [15, 19, 20]. Our
program synthesis method can be seen as execution-guided
[8, 12—14], where the training process its guided by the pre-
dicted programs’ execution results rather than explicit su-
pervision. Notably, PLAD [21] introduces a bootstrapped
learning framework that leverages a pre-trained program
generator to produce candidate programs for unseen shapes,
which are then used to iteratively fine-tune the model. Our
approach follows this paradigm, in which we treat our pre-
train LLM as the the model, and CAD program synthesis as
the task.

2.2. Learning to Recover CAD Programs

Our work also relates to the larger goal of reverse CAD
engineering from diverse input modalities, such as voxel
grids [26, 36, 40], point clouds [10, 17, 28, 28, 37, 41, 48,
49], and boundary representations [52]. Early approaches
relied on heuristic algorithms or lightweight neural net-
works, whereas recent works have begun to explore large
language models for this task [2—4, 16, 29, 33, 45, 50, 54,
56] given their strong symbolic reasoning abilities. Our
method falls within this family of approaches.

However, existing methods [23, 24, 27, 34, 43, 51]
rely on datasets containing paired ground-truth CAD pro-
grams and shapes. In practice, however, high-quality CAD
datasets such as [0, 25, 42, 47] are limited, and many
of them lack ground-truth programs. We adopt CAD-
Recode [34] as the pre-trained LLM for our method, and
fine-tunes on it.

3. Method

In this section, we formally describe the PLLM framework,
which takes input of the following components:

* (1) Pre-trained LLM: A model p(z |z, L) capable of
generating CAD programs z from input shapes x using
the language £, where x is drawn from a source distribu-
tion S.

¢ (2) Training dataset: A new dataset of shapes S*, repre-
senting a target distribution that differs from S.

¢ (3) Black-box executor: An executor £ that can execute
generated programs z to produce corresponding 3D ge-
ometries.

The objective of the PLLM framework is to fine-tune the
pre-trained model on the new distribution $* to obtain an
updated model p’. For an input shape z* € S*, the execu-
tion £(z*), where z* ~ p/(z|x*, L), should yield a shape
that achieves a higher reward (in our system, a lower Cham-
fer Distance) when compared to the execution of the origi-
nal model’s output on the same input *.

We illustrate the overall PLLM procedure in Figure |
To fine-tune p(z |z, L) toward the target distribution S*,
PLLM iteratively performs four key steps. First, the pre-
trained model p(z | z, £) is used to sample multiple candi-
date programs for each input shape z* € S* (section 3.1).
Second, for each input shape, the best sampled program is
identified based on the Chamfer Distance between its exe-
cution £(z) and the target shape x* (section 3.1). Third,
programmatic edits are applied to the selected programs to
generate additional variants, enabling the model to observe
a broader range of valid programs (section 3.2). Finally,
the LLM is fine-tuned on these edited programs and their
corresponding executions (section 3.3).

Through successive iterations, these steps bootstrap
one another, forming a virtuous cycle: improvements in
p(z |z, L) lead to higher-quality (X, Z) pairs that better re-
flect the target distribution S*, and training on these im-
proved pairs further refines the model toward S*.

3.1. Program Sampling

Given an input shape z*, the pre-trained LLM p(z | 2*, L)
generates a set of k& = 10 candidate programs {z;}%_;
through stochastic sampling (detailed in Appendix 6.2).
Since the generation process is non-deterministic, multi-
ple samples encourage exploration of diverse program can-
didates, allowing the selection of the best among them.
Across iterations, this diversity enables the model to refine
its output distribution toward higher-quality and more accu-
rate programs. This process is analogous to self-distillation,
where the model iteratively learns from its own best gener-
ations.

To select the best program, we compute the Chamfer
Distance between each execution £(z;) and the target shape

CVPR
raren

128

129
130

131
132
133
134
135
136
137
138
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165

166
167
168
169
170
171
172
173
174
175
176
177
178

CVPR
gprenen

179
180
181
182
183

184

185
186
187
188
189
190
191
192
193
194

195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

CVPR 2025 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Whole Pipeline

="
P Input Sampled Results
AP v ——
.

Best Sample aﬁ

Program Synthesis .---------........\

Train for next iteration |

Program Synthesis

(b) Program Length Diversification

J— Program Expansion

execution
-Q

Output (X, 2)

Figure 1. We show the overall pipeline in (a). At each iteration, the model first takes an input shape and samples multiple candidate
programs. The selection algorithm then identifies the best program—shape pairs, which are used for training in the next iteration. (b)
illustrates the details of the program length diversification process, where we perform both program expansion and shortening to create
additional variants. The edited programs serve as labels Z, and their corresponding executions are treated as inputs X to form the new

training dataset.

x*, choosing the candidate with the lowest value as the op-
timal program z*. If multiple candidates yield nearly iden-
tical reconstructions (diff Chamfer Distance < 1 x 10™%),
preference is given to shorter programs to promote concise
and efficient geometric representations.

3.2. Program Length Diversification

The pre-trained model may not capture the range of pro-
grams required by the new distribution §*, limiting its abil-
ity to represent shapes of varying complexity (see detailed
discussion in Section 5.3). To address this, we synthetically
expand (algorithm detailed in Appendix 6.4) or shorten (al-
gorithm detailed in Appendix 6.5) the selected programs
to create more variety. This broader length distribution
enables the model to generalize across different structural
complexities and thus adapt to inputs with a larger com-
plexity variance. This process is shown in Figure 1(b).

3.3. Training Data Pairs

We perform LoRA fine-tuning on the LLM using both the
extended and shortened programs as Z, paired with their
corresponding executions as X (additional training details
are provided in Appendix 6.3). A key advantage of this
design is that in each (X, Z) pair, the shape X is the ex-
act execution result of program Z, ensuring consistent su-
pervision during fine-tuning. Moreover, incorporating both
extended and shortened programs introduces greater vari-
ation in program lengths, which enhances the model’s ca-
pacity to generalize across different levels of program com-
plexity. This strategy maintains training stability while en-
riching the model’s capacity to produce a wider variety of
program lengths through iterative updates. We present addi-
tional experiments using alternative data pair configurations
in Section 5.4.

4. Implementation

In our implementation, we use CAD-Recode [34] as the
pre-trained model, which was trained on the DeepCAD
dataset [49]. We use the ABC dataset [25] as the new do-
main §*, and CadQuery together with its interpreter [9] as
the execution environment.

4.1. CAD-Recode

CAD-Recode [34] is originally trained on the DeepCAD
dataset [49], containing only sketch—extrude CAD pro-
grams (see Appendix 6.1 architecture for details). How-
ever, the ABC dataset [25] requires more types of opera-
tions than that. So our goal is to approximate the shapes in
ABC-dataset using only sketch—extrude operations instead
of reconstruct the exact same shapes.

Another limitation of CAD-Recode is that it caps its out-
put program length at 768 tokens, which is insufficient for
capturing the fine geometric details of many shapes in the
ABC dataset. We extend the maximum program length to
1200 tokens and apply our program diversification strategy
to expose the model to longer samples during training, en-
abling it to gradually generate more detailed and complex
programs.

4.2. Computational Cost

We use the first 15 batches from the ABC dataset, sam-
pling 5,000 shapes from each batch, for total 75,000 shapes.
However, CAD-Recode is able to produce executable pro-
grams for only 71,784 shapes, all experiments are con-
ducted on this subset.

We use a system with four NVIDIA L40S GPUs (each
with 48 GB of memory) and an AMD EPYC 7R13 CPU
(24 cores, 48 threads, 2.45 GHz). Running 6 self-training

CVPR
raren

211

212
213
214
215
216

217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

233

234
235
236
237
238
239
240
241

CVPR
gprenen

242
243
244
245
246
247

248

249
250
251
252
253
254
255
256
257

258

259
260
261
262
263
264
265
266
267
268
269

270

271
272
273
274
275
276
277
278

CVPR 2025 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Chamfer Distance (x1000) loy
400
200 08
o7

0s
04
WorstCD —e—
02

Average CD — o

Best loU

Average loU —e—

Best CD

(a) Chamfer Distance across Iterations

(b) loU across Iterations

WorstloU —e—] 1 2 3 4

(c) Program Length across Iterations

Figure 2. We compare quantitative results across iterations: (a) Chamfer Distance, (b) IoU, and (c) Program Length.

iterations takes 150 hours in total (around 25 hours per it-
eration). In each iteration, about 12 hours are spent on sam-
pling programs from the dataset, 10 hours on program selec-
tion (execution, Chamfer distance computation, and length
diversification), and 2 hours fine-tuning the language model
for four epochs.

5. Results and Evaluations

We take shapes from the ABC dataset as input and sample
point clouds from them. These point clouds are then pro-
cessed through our PLLM pipeline to generate outputs. We
present qualitative results by comparing our outputs with
those produced by CAD-Recode (Figure 4), as well as re-
sults across different training iterations (Figure 5). We also
provide quantitative evaluations of Chamfer Distance, In-
tersection over Union (IoU), and program length in Figure 2
and Sections 5.1, 5.2, and 5.3.

5.1. Chamfer Distance Across Iterations

We report the best, average, and worst Chamfer Distances
across iterations in Figure 2(a). Each distance is computed
after normalizing the predicted and input shapes to a unit
bounding box (1%) and scaling by 103. The best and worst
scores correspond to the mean of the top 10 and bottom
10 shapes per iteration, respectively, while the average re-
flects the mean over all shapes. The Chamfer Distance gen-
erally decreases over the first four iterations, after which im-
provements plateau or slightly regress, likely due to the lim-
ited CAD operations supported by our base model, CAD-
Recode (see Section 4.1).

5.2. IoU Across Iterations

Another interesting metric to consider is the IoU across iter-
ations (Figure 2(b)), which is not directly optimized in our
framework. We do not intentionally select programs with
high IoU, as our objective focuses on minimizing the Cham-
fer Distance (CD). While IoU measures volumetric overlap,
CD evaluates surface alignment between the generated and
target shapes. In our results, we observe that IoU increases
during the first two iterations but decreases in later ones.

This behavior arises because IoU is not explicitly used as a
reward signal—thus, as the model focuses more on lower-
ing CD, it may overfit surface alignment without necessarily
improving volumetric consistency.

5.3. Program Length Distance Across Iterations

We analyze how average, longest, and shortest program
lengths evolve across iterations in Figure 2(c). Initially,
average length increases, allowing finer shape generation.
The baseline model, CAD-Recode, is limited to 768 to-
kens. When this cap is raised to 1200 tokens at iteration
0, program length grows slightly. From iteration 2 onward,
as longer programs are added through expansion (see Sec-
tion 3.2), the maximum length rises markedly, improving
the model’s capacity to represent detailed geometries.

-
Program ‘

Diversification

Ground Truth Shape

Program
Sampling

W

Paired Data

Baseline 1: (X, Z)

Baseline 2: (X,

~ H
Baseline 3: (X, 2) ¢ ---sfrossssssssssnnnnnnnnnnnasl

Figure 3. Overview of different baseline strategies compared in
our study. The figure illustrates how each baseline constructs its
(X, Z) training pairs. Baseline 1 uses the generated program and
its execution; Baseline 2 uses the input shape and its best gener-
ated program; and Baseline 3 samples within each batch, selecting
only the top 20% of high-performing pairs. Our proposed method
further introduces program expansion and shortening to generate
paired data (X, Z) that better align with the target distribution.

5.4. Experiments with Different Pseudo Label Pairs

To iteratively fine-tune the model for improved perfor-
mance, we require our paired dataset to satisfy four key cri-
teria:

1. The program represents the top-performing outputs,

CVPR
raren

279
280
281
282

283

284
285
286
287
288
289
290
291
292

293

294
295
296

297

CVPR
gprenen

298
299
300
301
302
303
304
305
306
307

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

323

324
325
326
327
328
329
330

331

332
333
334

CVPR 2025 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Comparison of different pseudo-label and program
pairing strategies evaluated at the final iteration. Our pro-
posed method, which uses paired synthetic programs and their
executions for training, achieves the lowest Chamfer Distance
and demonstrates the most consistent performance improvement
across iterations.

Sampling Method Final Average CD
Our Method 9.73
CAD-Recode 26.12
Baseline 1 (best sample, its execution) 28.24
Baseline 2 (best sample, input shape) 10.28
Baseline 3 (In Batch Sampling) 22.84

ensuring that the model shifts its distribution toward

higher-quality generations.

2. The program Z, which serves as the label, can be exe-
cuted to produce the shape X, providing unambiguous
supervision.

3. The shape X distribution is close to the target distribu-
tion

4. The dataset introduces additional programmatic infor-
mation that enhances the model’s reasoning and genera-
tive ability.

Criterion (1) is automatically satisfied by the sampling
stage (Section 3.1), which consistently selects the best pro-
gram among all generated samples. Our method introduced
in Section 3.2, which expands and shortens programs and
uses the resulting diversified programs together with their
executions for training, automatically satisfies criteria (2)
and (4), while criterion (3) is only partially addressed.

In practice, it is impossible to satisfy all four crite-
ria simultaneously; only paired ground-truth programs and
shapes can fully meet them. For pseudo-labeling methods,
certain trade-offs are inevitable. In this subsection, we dis-
cuss alternative approaches (Figure 3) that fulfill different
subsets of these criteria. The results of these methods, eval-
uated at the final iteration, are presented in Table 1, where
our proposed method achieves the best overall performance.

5.4.1. Baseline 1: (best sample, its execution) pair

The first baseline method (red line in Figure 3) trains the
model using pairs of generated programs as Z and their
corresponding executions as X. However, this approach
actually degrades performance, as the model repeatedly ob-
serves shapes that lie outside the target distribution paired
with their generated programs, preventing it from making
meaningful improvements.

5.4.2. Baseline 2: (best sample, input shape) pair

The second baseline method (purple line in Figure 3) trains
the model using pairs of generated programs as Z and the
corresponding input shapes as X . In essence, this approach

performs a self-guided search within the model, allowing it
to train on its own best-available results at each iteration.
This method achieves noticeable improvements; however,
it compromises criterion (2), since the input shape and the
program are not perfectly matched.

5.4.3. Baseline 3: In Batch Sampling

The final baseline method extends from Baseline 2 by per-
forming sampling within each batch (blue dashed line in
Figure 3). Instead of using all data for the next iteration, we
select only the top 20% of samples based on performance.
Thus, while the next iteration is still trained using (best sam-
ple, input shape) pairs, lower-quality samples are excluded,
representing an improvement over the previous baseline.

However, in our experiments, we observed that this ap-
proach primarily enhances the model’s performance on the
best shapes. As the top-performing samples continue to im-
prove across iterations, the remaining 80% of shapes re-
ceive no updates, resulting in little to no improvement for
the lower-quality cases.

6. Conclusion

We presented PLLM, a self-training framework for un-
supervised fine-tuning of large language models in CAD
program synthesis. By iteratively generating, select-
ing, and refining pseudo-labeled CAD programs, PLLM
enables model improvement without requiring paired
shape—program datasets. Our approach combines knowl-
edge distillation and search-based pseudo-labeling to bridge
the gap between pre-trained CAD models and unlabeled
shape data. Empirical evaluations show that PLLM out-
performs the baseline CAD-Recode model in both geomet-
ric reconstruction quality and program diversity, achieving
lower Chamfer Distances across iterations while maintain-
ing valid and interpretable CAD code.

A major drawback of the pseudo-labeling approach is its
computational cost. The process involves multiple itera-
tions, each consisting of sampling, selection, and training
stages. In each iteration, beyond model training, the pro-
gram sampling and selection steps also require non-trivial
time. This overhead reflects the inherent cost of operating
without ground-truth programs.

CVPR
raren

335
336
337
338
339

340

341
342
343
344
345
346
347
348
349
350
351
352
353

354

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

CVPR CVPR

#***** #*****

CVPR 2025 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 Shape 7

Ground Truth

CAD-Recode

‘AN,
A
b & %

®,

Figure 4. Comparison between our results and those produced by CAD-Recode, which correspond to the outputs from the first iteration of
our framework

LE e
311

Ground Truth Iteration O Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

|

|

|

|
X W KK
eva\ls
V\olats
KX AY LKS

|
)
\

BE XY R
|
SEX A Y Rik™
LYeoqat«

Figure 5. Results across different iterations, showing that the generated shapes gradually improve in quality as training progresses

CVPR
gpreren

375

376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
M7
418
419
420
421
422
423
424
425
426
427
428
429
430

CVPR 2025 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

Sk Aziz Ali, Mohammad Sadil Khan, and Didier Stricker.
Brep boundary and junction detection for cad reverse engi-
neering. In IEEE International Conference on Computing
and Machine Intelligence (ICMI), 2024. 1

Kamel Alrashedy, Pradyumna Tambwekar, Zulfigar Zaidi,
Megan Langwasser, Wei Xu, and Matthew C. Gombo-
lay. Generating cad code with vision-language models
for 3d designs. arXiv preprint arXiv:2410.05340, 2024.
arXiv:2410.05340. 2

Kamel Alrashedy, Pradyumna Tambwekar, Zulfigar Zaidi,
Megan Langwasser, Wei Xu, and Matthew C. Gombolay.
Generating cad code with vision-language models for 3d de-
signs. In Proceedings of the International Conference on
Learning Representations (ICLR), 2025. Preprint available
via IEEE Xplore (Document 10890248).

Akshay Badagabettu, Sai Sravan Yarlagadda, and
Amir Barati Farimani. Query2cad: Generating cad models
using natural language queries. CoRR, abs/2406.00144,
2024. 2

Pal Benko and J et al. Faigl. Algorithms for reverse engineer-
ing boundary representation (b-rep) solid models. Technical
report, Berkeley EECS / UC Berkeley, 2001. 1

Pratyush Bharadwaj, Paul Willberg, Faizan Ahmad, Adeel
Ahmad, et al. Simjeb: Simulated joint engineering bench-
mark. https://simjeb.github.io, 2023. Accessed:
2025-07-12. 2

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh
Singh, and Pushmeet Kohli. Leveraging grammar and re-
inforcement learning for neural program synthesis. In Pro-
ceedings of the International Conference on Learning Rep-
resentations (ICLR), 2018. 2

Xinyun Chen, Chang Liu, and Dawn Song. Execution-
guided neural program synthesis. In Proceedings of the In-
ternational Conference on Learning Representations (ICLR),
2019. 2

CadQuery developers. Cadquery — a python parametric cad
scripting framework. 3

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg,
Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and
Wojciech Matusik. Inversecsg: Automatic conversion of 3d
models to csg trees. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia, 37(6), 2018. 2

Elona Dupont, Kseniya Cherenkova, Anis Kacem, Sk Aziz
Ali, Ilya Arzhannikov, Gleb Gusev, and Djamila Aouada.
Cadops-net: Jointly learning cad operation types and
steps from boundary-representations. In arXiv preprint
arXiv:2208.10555,2022. 1

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and
Josh Tenenbaum. Learning to infer graphics programs from
hand-drawn images. In Advances in Neural Information Pro-
cessing Systems (NeurlPS), 2018. 2

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh
Tenenbaum, and Armando Solar-Lezama. Write, execute,
assess: Program synthesis with a repl. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2019.

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias
Sable-Meyer, Luc Cary, Lucas Morales, Luke Hewitt, Ar-
mando Solar-Lezama, and Joshua B. Tenenbaum. Dream-
coder: Growing generalizable, interpretable knowledge with
wake—sleep bayesian program learning. arXiv preprint
arXiv:2006.08381, 2020. 2

Aditya Ganeshan, R. Kenny Jones, and Daniel Ritchie. Im-
proving unsupervised visual program inference with code
rewriting families. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 2023. 2

Yandong Guan, Xilin Wang, Xingxi Ming, Jing Zhang,
Dong Xu, and Qian Yu. Cad-coder: Text-to-cad generation
with chain-of-thought and geometric reward. arXiv preprint
arXiv:2505.19713, 2025. arXiv:2505.19713. 2

Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong,
and Baining Guo. Complexgen: Cad reconstruction by b-rep
chain complex generation. ACM Transactions on Graphics
(SIGGRAPH), 41(4), 2022. 2

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’ Aurelio Ran-
zato. Revisiting self-training for neural sequence generation.
In Proceedings of the International Conference on Learning
Representations (ICLR), 2020. 2

Robert Jones, Daniel Ritchie, and Armando Solar-Lezama.
Shapecoder: Discovering abstractions for visual programs
from unstructured primitives. ACM Transactions on Graph-
ics (TOG), 42(4):1-13, 2023. 2

Robert Jones, Shoubhik Bhat, Daniel Ritchie, and Armando
Solar-Lezama. Learning to edit visual programs with self-
supervision. arXiv preprint arXiv:2406.02383, 2024. 2

R. Kenny Jones, Homer Walke, and Daniel Ritchie. Plad:
Learning to infer shape programs with pseudo-labels and ap-
proximate distributions. CVPR, 2022. Revised version v4,
22 Mar 2022. 2

Jacob Kahn, Ann Lee, and Awni Hannun. Self-training for
end-to-end speech recognition. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7084-7088. IEEE, 2020. 2
Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali,
Kseniya Cherenkova, Anis Kacem, and Djamila Aouada.
Cad-signet: Cad language inference from point clouds using
layer-wise sketch instance guided attention. CVPR, 2024. 2
Muhammad Tayyab Khan, Lequn Chen, Ye Han Ng, Wenhe
Feng, Nicholas Yew Jin Tan, and Seung Ki Moon. Leverag-
ing vision-language models for manufacturing feature recog-
nition in cad designs. arXiv preprint arXiv:2411.02810,
2024. 2

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. Abc: A big cad model
dataset for geometric deep learning. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.
1,2,3

Joseph George Lambourne, Karl Willis, Pradeep Kumar Ja-
yaraman, Longfei Zhang, Aditya Sanghi, and Kamal Rahimi
Malekshan. Reconstructing editable prismatic cad from
rounded voxel models. In SIGGRAPH Asia Conference Pa-
pers, 2022. 2

CVPR
graren

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
a7
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

https://simjeb.github.io

CVPR
gpreren

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

CVPR 2025 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, Guichun
Zhou, and Xiangdong Zhou. Cad-llama: Leveraging large
language models for computer-aided design parametric 3d
model generation. arXiv preprint arXiv:2505.04481, 2025.
1,2

Yujia Liu, Anton Obukhov, Jan Dirk Wegner, and Konrad
Schindler. Point2cad: Reverse engineering cad models from
3d point clouds. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1540-1550, 2024. 2

Liane Makatura, Michael Foshey, Bohan Wang, Felix
Hiéhnlein, Pingchuan Ma, Bolei Deng, Megan Tjandra-
suwita, Andrew Spielberg, Crystal Elaine Owens, Pe-
ter Yichen Chen, Allan Zhao, Amy Zhu, Wil J. Norton,
Edward Gu, Joshua Jacob, Yifei Li, Adriana Schulz, and
Wojciech Matusik. How can large language models help
humans in design and manufacturing? arXiv preprint
arXiv:2307.14377,2023. arXiv:2307.14377. 2

Dimitrios Mallis, Ahmet Serdar Karadeniz, Sebastian
Cavada, Danila Rukhovich, Niki Foteinopoulou, Kseniya
Cherenkova, Anis Kacem, and Djamila Aouada. Cad-
assistant: Tool-augmented vllms as generic cad task solvers.
ICCV, 2025. arXiv:2412.13810. 1

David McClosky, Eugene Charniak, and Mark Johnson. Ef-
fective self-training for parsing. In Proceedings of the Hu-
man Language Technology Conference of the NAACL, Main
Conference, pages 152—-159, New York City, USA, 2006. As-
sociation for Computational Linguistics. 2

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International Conference on Ma-
chine Learning, pages 1928-1937, 2016. 2

Felix Ocker, Stefan Menzel, Ahmed Sadik, and Thiago
Rios. From idea to cad: A language model-driven multi-
agent system for collaborative design. arXiv preprint
arXiv:2503.04417,2025. 2

Danila Rukhovich, Elona Dupont, Dimitrios Mallis, Kseniya
Cherenkova, Anis Kacem, and Djamila Aouada. Cad-recode:
Reverse engineering cad code from point clouds. ICCV,
2025.1,2,3

H. Scudder. Probability of error of some adaptive pattern-
recognition machines. IEEE Transactions on Information
Theory, 11(3):363-371, 1965. 2

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos
Kalogerakis, and Subhransu Maji. Csgnet: Neural shape
parser for constructive solid geometry. In /IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.
2

Gopal Sharma, Difan Liu, Evangelos Kalogerakis,
Subhransu Maji, Siddhartha Chaudhuri, and Radomir
Mech. Parsenet: A parametric surface fitting network for 3d
point clouds. In Proc. European Conference on Computer
Vision (ECCV), 2020. 2

David Silver, Guy Lever, Nicolas Heess, Thomas Degris,
Daan Wierstra, and Martin Riedmiller. Deterministic pol-
icy gradient algorithms. In International Conference on Ma-
chine Learning, pages 387-395, 2014. 2

(39]

(40]

(41]

(42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

(501

[51]

(52]

Richard S. Sutton, David A. McAllester, Satinder P. Singh,
and Yishay Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In Advances in
Neural Information Processing Systems, pages 1057-1063,
2000. 2

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis,
William T. Freeman, Joshua B. Tenenbaum, and Jiajun Wu.
Learning to infer and execute 3d shape programs. arXiv,
2019. Presented at ICLR 2019. 2

Mikaela Angelina Uy, Yen yu Chang, Minhyuk Sung,
Purvi Goel, Joseph Lambourne, Tolga Birdal, and Leonidas
Guibas. Point2cyl: Reverse engineering 3d objects from
point clouds to extrusion cylinders. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 2
Aayush Vardhan, Rishabh Sahay, Abhishek Pandey, et al.
Mcm: A mechanical components dataset for geometric deep
learning. arXiv preprint arXiv:2306.09053, 2023. 2

Ruiyu Wang, Yu Yuan, Shizhao Sun, and Jiang Bian. Text-
to-cad generation through infusing visual feedback in large
language models. ICML, 2025. 1,2

Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu,
Yanzhou Zhang, and Jie Yang. Cad-gpt: Synthesising cad
construction sequence with spatial reasoning-enhanced mul-
timodal llms. arXiv preprint arXiv:2412.19663, 2024. 1
Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu,
Yanzhou Zhang, and Jie Yang. Cad-gpt: Synthesising cad
construction sequence with spatial reasoning-enhanced mul-
timodal llms. AAAI 2025. Accepted at AAAI 2025 (Vol. 39,
No. 8, pp. 7880-7888). 2

Ronald J. Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Machine
Learning, 8:229-256, 1992. 2

Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao
Du, Joseph G. Lambourne, Armando Solar-Lezama, and
Wojciech Matusik. Fusion 360 gallery: A dataset and en-
vironment for programmatic cad construction from human
design sequences. ACM Transactions on Graphics (TOG),
40(4):1-21,2021. 2

Q. Wu, K. Xu, and J. Wang. Constructing 3d csg models
from 3d raw point clouds. Computer Graphics Forum, 37
(5),2018. 2

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A
deep generative network for computer-aided design models.
ICCV,2021. 1,2,3

Sifan Wu, Amir Khasahmadi, Mor Katz, Pradeep Kumar Ja-
yaraman, Yewen Pu, Karl Willis, and Bang Liu. Cad-1lm:
Large language model for cad generation. In NeurIPS Work-
shop on Machine Learning for Creativity and Design, 2023.
Workshop, NeurIPS 2023, New Orleans, LA. 2

Jingwei Xu, Zibo Zhao, Chenyu Wang, Wen Liu,
Yi Ma, and Shenghua Gao. Cad-mllm: Unifying
multimodality-conditioned cad generation with mllm. arXiv
preprint arXiv:2411.04954, 2025. 2

Xianghao Xu, Wenzhe Peng, Chin-Yi Cheng, Karl D. D.
Willis, and Daniel Ritchie. Inferring CAD mod-
eling sequences using zone graphs. arXiv preprint
arXiv:2104.03900, 2021. Submitted 30 Mar 2021; revised
20 Apr2021. 1,2

CVPR
graren

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603

CVPR
gprenen

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

(53]

[54]

[55]

[56]

(571

(58]

CVPR 2025 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

David Yarowsky. Unsupervised word sense disambiguation
rivaling supervised methods. In Proceedings of the 33rd An-
nual Meeting of the Association for Computational Linguis-
tics, pages 189-196, Cambridge, Massachusetts, USA, 1995.
Association for Computational Linguistics. 2

Licheng Zhang, Bach Le, Naveed Akhtar, Siew-Kei Lam,
and Tuan Ngo. Large language models for computer-aided
design: A survey. arXiv preprint arXiv:2505.08137, 2025.
arXiv:2505.08137. 2

Shengdi Zhou, Tianyi Tang, and Bin Zhou. Cadparser: A
learning approach of sequence modeling for b-rep cad. In
Proceedings of the Thirty-Second International Joint Con-
ference on Artificial Intelligence (IJCAI), 2023. 1

Haotian Zhu, Guyue Zhang, Zekun Hao, Zipeng Gao,
Hengyang Zhao, Yifei Ren, Qingyang Wu, Xuan Luo, Jia-
hao Zhang, Masha Shugrina, and Xinchen Yan. Text2cad:
A large-scale benchmark for language-driven cad modeling.
arXiv preprint arXiv:2409.17106, 2024. 2

Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and
Anind K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI Conference on Artificial Intelligence,
pages 1433-1438, 2008. 2

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao
Liu, Ekin D. Cubuk, and Quoc V. Le. Rethinking pre-training
and self-training. arXiv preprint arXiv:2006.06882, 2020. 2

CVPR
raren

CVPR
gprenen

629

630
631
632
633
634
635
636
637
638
639
640
641

642
643
644
645
646
647
648
649
650
651
652

653
654
655
656
657
658

659

660
661
662
663
664
665
666
667
668
669
670
671
672

CVPR 2025 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

PLLM: Pseudo-Labeling Large Language Models for CAD Program Synthesis

Supplementary Material

6.1. CAD-Recode

CAD-Recode addresses the task of CAD reverse engineer-
ing by mapping a 3D input point cloud to executable CAD
code. The overall pipeline comprises two primary compo-
nents: (i) a point-cloud encoder (“point projector”’) which
downsamples the input point cloud, applies positional en-
coding and a shallow feed-forward network, and produces a
sequence of feature embeddings; and (ii) a language-model
decoder, which is a small-scale pretrained large-language
model (e.g., Qwen2-1.5B) adapted via a lightweight projec-
tion layer that accepts the point-cloud embeddings and gen-
erates CAD code (in Python, using the CadQuery library)
as output.

Training is done end-to-end on a large synthetic dataset
of over one million program—shape pairs: each pair com-
prises a point cloud sampled from executing a ground-truth
CAD script and the corresponding Python source code that
produced it. Teacher-forcing is used during training to
minimise token-level negative log-likelihood. At inference
time multiple candidate programs are decoded; among these
the one whose execution yields a point-cloud representa-
tion most closely matching the input (measured via Cham-
fer Distance) is selected as the final output. We show the
pipeline of CAD-Recode in Figure 6.

The CAD code is expressed in the CadQuery Python
scripting language, allowing interpretable, modular, and di-
rectly executable CAD representations rather than opaque
numeric vectors. The dataset is procedurally generated to
cover a broad variety of sketch-and-extrude operations, pro-
viding a scalable and controlled training supply.

6.2. Program Sampling

Given an input shape, we sample /0 candidate programs
from the LLM using stochastic decoding to encourage di-
versity while maintaining structural consistency. Specifi-
cally, we apply nucleus sampling with top_p = 0.8 and
top_k = 30, and set the temperature to 1. 2 to introduce
moderate randomness in token generation. This setup en-
sures that sampled programs differ in operation order, pa-
rameterization, or minor geometric variations, yet remain
semantically close to the input shape. In other words, the
generated candidates are diverse but not divergent—they
explore multiple plausible reconstructions without deviat-
ing excessively from the shape’s geometry or intended de-
sign semantics.

6.3. LoRA Fine-Tuning

We fine-tune the pretrained CAD-Recode model using Low-
Rank Adaptation (LoRA) to specialize it for longer and
more complex program generation conditioned on 3D point
clouds. The original CAD-Recode architecture supports a
maximum token length of 768. To encourage the model to
produce longer and more expressive programs, we extend
this limit to 1200 tokens, effectively expanding the language
capacity of the decoder while maintaining the same point
cloud resolution.

Our fine-tuning strategy preserves the model’s ability
to output syntactically valid and executable CadQuery
code. To achieve this, we apply LoRA updates only to
the middle transformer layers (layers 4-8), which primar-
ily govern high-level reasoning and compositional planning,
while keeping the bottom layers (responsible for tokeniza-
tion, geometric grounding, and syntax formation) frozen.
This design allows the model to adapt its semantic un-
derstanding of CAD programs without disrupting the sta-
ble syntax-generation capability of the pretrained backbone.
The LoRA configuration uses rank » = 8, a = 32, and
dropout p = 0.1, applied to both the self-attention and MLP
projections within the selected layers.

6.4. Program Expansion

In CadQuery, a workspace corresponds to a local coordi-
nate frame used for sketching and feature operations (e.g.,
extrude, cut, union). And each workspace encapsu-
lates a self-contained sequence of modeling steps that con-
tribute to the final solid geometry.

The base CAD-Recode output typically instantiates one
or two workspaces. We iteratively expand the program
by either (i) spawning a new workspace (creating a new
Workplane with its own procedurally generated sketch and
feature operations), or (ii) appending additional opera-
tions to an existing workspace. We cap the total number
of workspaces at Wy,,x = 5 to encourage modular but
compact program structure. Each iteration adds either 1
workspace with 2 CAD operations, or max 5 new opera-
tions but without new workspace created. This ensures the
program length grows gradually across iterations while re-
maining syntactically valid and executable.

6.5. Program Shortening

We shorten CadQuery programs by removing all top-level
boolean calls union, cut, and intersect from the ex-
pression, and leave the remainder intact. The procedure is
a single left-to-right pass over the expression that tracks (i)

CVPR
raren

673

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

714

715
716
717
718

CVPR CVPR

#***** #*****

CVPR 2025 Submission #*****, CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

E?inf_C|OUd import ... finalize().extrude(15)<e> — P
' % Python
% Large Language Model interpreter
@ [Linear Layer) Tokenizer
<s> import cadquery ... extrude(15)

=
CAD model

Figure 6. We show the pipeline of CAD-Recode, image from the orginal work.

719 the current parenthesis depth and (ii) whether the cursor is
720 inside a quoted string (with escape handling). Whenever the
721 cursor is not inside a string and the depth is zero, we test
722 for one of the boolean operator prefixes; upon a match, we
723 parse and skip the entire balanced-call payload (its match-
724 ing closing parenthesis), correctly handling nested paren-
725 theses and quoted substrings. After collecting all matched
726 call intervals, we rebuild the expression by dropping those
727 ranges and keeping everything else unchanged. This ap-
728 proach guarantees that only top-level boolean edits are re-
729 moved while nested calls and string literals are preserved.

	Introduction
	Related Works
	Self Training
	Learning to Recover CAD Programs

	Method
	Program Sampling
	Program Length Diversification
	Training Data Pairs

	Implementation
	CAD-Recode
	Computational Cost

	Results and Evaluations
	Chamfer Distance Across Iterations
	IoU Across Iterations
	Program Length Distance Across Iterations
	Experiments with Different Pseudo Label Pairs
	Baseline 1: (best sample, its execution) pair
	Baseline 2: (best sample, input shape) pair
	Baseline 3: In Batch Sampling

	Conclusion
	CAD-Recode
	Program Sampling
	LoRA Fine-Tuning
	Program Expansion
	Program Shortening

