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Abstract

Recovering Computer-Aided Design (CAD) programs from
3D geometries is a widely studied problem. With the re-
cent advancements in large language models (LLMs), sev-
eral works have explored leveraging their strong symbolic
reasoning capabilities for CAD program synthesis. How-
ever, existing methods that train LLMs to generate CAD
programs rely on supervised learning, whereas ground-
truth CAD program datasets are often unavailable in prac-
tice. We introduce PLLM : Pseudo-Labeling Large Lan-
guage Models for CAD Program Synthesis, an unsupervised
self-training framework that fine-tunes LLMs for CAD pro-
gram generation without requiring paired supervision. Our
method takes as input a pre-trained LLM capable of gen-
erating CAD programs and a 3D shape dataset. The model
iteratively refines the pre-trained LLM’s performance on the
new dataset, achieving improved program synthesis quality
without access to ground-truth CAD programs.

1. Introduction

Computer-Aided Design (CAD) is the industry standard for
3D modeling in engineering and manufacturing. Design-
ers typically construct models through a sequence of para-
metric operations, which, when executed, produce bound-
ary representations (B-reps) of 3D geometry. The inverse
problem of recovering a CAD program from a given shape
is also extensively studied. Recovering the program enables
semantic editing, programmatic modification, and compact
representation of 3D models.

Previous approaches address this inverse problem by
training lightweight neural networks to predict CAD opera-
tions and their corresponding parameters [1, 5, 11, 52, 55].
More recently, large language models (LLMs) have been
explored for this reverse-engineering task due to their strong
symbolic reasoning abilities and rapid progress in program
synthesis [27, 30, 34, 43, 44]. However, existing methods
all rely on supervised learning that requires ground-truth
CAD programs. This reliance introduces two major chal-
lenges: (1) when applying a model trained on one dataset

to another without ground-truth programs, fine-tuning be-
comes difficult due to the absence of supervision; and (2)
the existence of multiple CAD programming languages
makes it challenging for a model trained on one grammar
to generalize to another.

In this work, we introduce a new framework to address
this problem. Formally, our system takes as input a pre-
trained LLM p(z | x, £) that generates a CAD program z
in language £ from a shape z, where z is sampled from
a distribution S. Given another distribution of shapes S*,
our goal is to fine-tune the pre-trained model to adapt it
to the new domain. The main challenge is that the model
may perform poorly on S* because it is not well adapted to
this distribution. Moreover, $* may lack ground-truth CAD
programs or include programs not expressed in £, making
direct supervised fine-tuning infeasible.

Our key observation is that the pre-trained LLM inher-
ently possesses the ability to generate programs for shapes
from the new domain in its original language £. However,
the generated results may be suboptimal. To address this,
our method samples programs from the pre-trained model,
executes them, and compares the outputs with the target
inputs. This process enables the model to learn from its
best-performing results, where the best programs serve as
pseudo-labels that progressively improve the model through
iterative self-training. Specifically, we use CAD-Recode
[34], which is trained on the DeepCAD dataset [49] and
outputs programs in the CadQuery language, as our pre-
trained LLM. We then fine-tune it on the ABC dataset [25],
a widely used benchmark that does not include ground-truth
CAD programs.

In summary, we propose a novel method to fine-tune ex-
isting LLMs for improved CAD program synthesis for new
domain in the absence of ground-truth supervision. Our key
contributions are as follows:

* We introduce PLLM, a self-training framework that fine-
tunes pre-trained LLMs on unlabeled 3D datasets by
jointly leveraging search and distillation to discover high-
quality pseudo programs.

* We develop a method to sample output programs from
LLMs and apply programmatic edits to generate diverse
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variations, enriching supervision and improving model
robustness across training iterations.

e We validate our method by fine-tuning CAD-Recode
(pre-trained on DeepCAD) on the ABC dataset—showing
improvements in geometric fidelity.

2. Related Works
2.1. Self Training

Our work primarily belongs to the broader category of un-
supervised and weakly-supervised learning [7, 46]. For
these families of tasks, many approaches resort to general-
purpose policy gradient reinforcement learning [32, 38, 39,
46, 57].However, as CAD programs are generally not dif-
ferentiable, reinforcement learning methods are not appli-
cable. Instead, we adopt a self-training approach, which
has been widely used to improve model performance in
weakly-supervised settings [31, 35, 53]. Recent advances
further show that self-training and data-augmentation-based
methods can enhance neural models across various do-
mains [18, 22, 58].

In the domain of visual program synthesis, self-training
has emerged as an effective strategy for learning in the ab-
sence of ground-truth program supervision [15, 19, 20]. Our
program synthesis method can be seen as execution-guided
[8, 12—14], where the training process its guided by the pre-
dicted programs’ execution results rather than explicit su-
pervision. Notably, PLAD [21] introduces a bootstrapped
learning framework that leverages a pre-trained program
generator to produce candidate programs for unseen shapes,
which are then used to iteratively fine-tune the model. Our
approach follows this paradigm, in which we treat our pre-
train LLM as the the model, and CAD program synthesis as
the task.

2.2. Learning to Recover CAD Programs

Our work also relates to the larger goal of reverse CAD
engineering from diverse input modalities, such as voxel
grids [26, 36, 40], point clouds [10, 17, 28, 28, 37, 41, 48,
49], and boundary representations [52]. Early approaches
relied on heuristic algorithms or lightweight neural net-
works, whereas recent works have begun to explore large
language models for this task [2—4, 16, 29, 33, 45, 50, 54,
56] given their strong symbolic reasoning abilities. Our
method falls within this family of approaches.

However, existing methods [23, 24, 27, 34, 43, 51]
rely on datasets containing paired ground-truth CAD pro-
grams and shapes. In practice, however, high-quality CAD
datasets such as [0, 25, 42, 47] are limited, and many
of them lack ground-truth programs. We adopt CAD-
Recode [34] as the pre-trained LLM for our method, and
fine-tunes on it.

3. Method

In this section, we formally describe the PLLM framework,
which takes input of the following components:

* (1) Pre-trained LLM: A model p(z |z, L) capable of
generating CAD programs z from input shapes x using
the language £, where x is drawn from a source distribu-
tion S.

¢ (2) Training dataset: A new dataset of shapes S*, repre-
senting a target distribution that differs from S.

¢ (3) Black-box executor: An executor £ that can execute
generated programs z to produce corresponding 3D ge-
ometries.

The objective of the PLLM framework is to fine-tune the
pre-trained model on the new distribution $* to obtain an
updated model p’. For an input shape z* € S*, the execu-
tion £(z*), where z* ~ p/(z|x*, L), should yield a shape
that achieves a higher reward (in our system, a lower Cham-
fer Distance) when compared to the execution of the origi-
nal model’s output on the same input *.

We illustrate the overall PLLM procedure in Figure |
To fine-tune p(z |z, L) toward the target distribution S*,
PLLM iteratively performs four key steps. First, the pre-
trained model p(z | z, £) is used to sample multiple candi-
date programs for each input shape z* € S* (section 3.1).
Second, for each input shape, the best sampled program is
identified based on the Chamfer Distance between its exe-
cution £(z) and the target shape x* (section 3.1). Third,
programmatic edits are applied to the selected programs to
generate additional variants, enabling the model to observe
a broader range of valid programs (section 3.2). Finally,
the LLM is fine-tuned on these edited programs and their
corresponding executions (section 3.3).

Through successive iterations, these steps bootstrap
one another, forming a virtuous cycle: improvements in
p(z |z, L) lead to higher-quality (X, Z) pairs that better re-
flect the target distribution S*, and training on these im-
proved pairs further refines the model toward S*.

3.1. Program Sampling

Given an input shape z*, the pre-trained LLM p(z | 2*, L)
generates a set of k& = 10 candidate programs {z;}%_;
through stochastic sampling (detailed in Appendix 6.2).
Since the generation process is non-deterministic, multi-
ple samples encourage exploration of diverse program can-
didates, allowing the selection of the best among them.
Across iterations, this diversity enables the model to refine
its output distribution toward higher-quality and more accu-
rate programs. This process is analogous to self-distillation,
where the model iteratively learns from its own best gener-
ations.

To select the best program, we compute the Chamfer
Distance between each execution £(z;) and the target shape
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(a) Whole Pipeline
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(b) Program Length Diversification
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Figure 1. We show the overall pipeline in (a). At each iteration, the model first takes an input shape and samples multiple candidate
programs. The selection algorithm then identifies the best program—shape pairs, which are used for training in the next iteration. (b)
illustrates the details of the program length diversification process, where we perform both program expansion and shortening to create
additional variants. The edited programs serve as labels Z, and their corresponding executions are treated as inputs X to form the new

training dataset.

x*, choosing the candidate with the lowest value as the op-
timal program z*. If multiple candidates yield nearly iden-
tical reconstructions (diff Chamfer Distance < 1 x 10™%),
preference is given to shorter programs to promote concise
and efficient geometric representations.

3.2. Program Length Diversification

The pre-trained model may not capture the range of pro-
grams required by the new distribution §*, limiting its abil-
ity to represent shapes of varying complexity (see detailed
discussion in Section 5.3). To address this, we synthetically
expand (algorithm detailed in Appendix 6.4) or shorten (al-
gorithm detailed in Appendix 6.5) the selected programs
to create more variety. This broader length distribution
enables the model to generalize across different structural
complexities and thus adapt to inputs with a larger com-
plexity variance. This process is shown in Figure 1(b).

3.3. Training Data Pairs

We perform LoRA fine-tuning on the LLM using both the
extended and shortened programs as Z, paired with their
corresponding executions as X (additional training details
are provided in Appendix 6.3). A key advantage of this
design is that in each (X, Z) pair, the shape X is the ex-
act execution result of program Z, ensuring consistent su-
pervision during fine-tuning. Moreover, incorporating both
extended and shortened programs introduces greater vari-
ation in program lengths, which enhances the model’s ca-
pacity to generalize across different levels of program com-
plexity. This strategy maintains training stability while en-
riching the model’s capacity to produce a wider variety of
program lengths through iterative updates. We present addi-
tional experiments using alternative data pair configurations
in Section 5.4.

4. Implementation

In our implementation, we use CAD-Recode [34] as the
pre-trained model, which was trained on the DeepCAD
dataset [49]. We use the ABC dataset [25] as the new do-
main §*, and CadQuery together with its interpreter [9] as
the execution environment.

4.1. CAD-Recode

CAD-Recode [34] is originally trained on the DeepCAD
dataset [49], containing only sketch—extrude CAD pro-
grams (see Appendix 6.1 architecture for details). How-
ever, the ABC dataset [25] requires more types of opera-
tions than that. So our goal is to approximate the shapes in
ABC-dataset using only sketch—extrude operations instead
of reconstruct the exact same shapes.

Another limitation of CAD-Recode is that it caps its out-
put program length at 768 tokens, which is insufficient for
capturing the fine geometric details of many shapes in the
ABC dataset. We extend the maximum program length to
1200 tokens and apply our program diversification strategy
to expose the model to longer samples during training, en-
abling it to gradually generate more detailed and complex
programs.

4.2. Computational Cost

We use the first 15 batches from the ABC dataset, sam-
pling 5,000 shapes from each batch, for total 75,000 shapes.
However, CAD-Recode is able to produce executable pro-
grams for only 71,784 shapes, all experiments are con-
ducted on this subset.

We use a system with four NVIDIA L40S GPUs (each
with 48 GB of memory) and an AMD EPYC 7R13 CPU
(24 cores, 48 threads, 2.45 GHz). Running 6 self-training
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Figure 2. We compare quantitative results across iterations: (a) Chamfer Distance, (b) IoU, and (c) Program Length.

iterations takes 150 hours in total (around 25 hours per it-
eration). In each iteration, about 12 hours are spent on sam-
pling programs from the dataset, 10 hours on program selec-
tion (execution, Chamfer distance computation, and length
diversification), and 2 hours fine-tuning the language model
for four epochs.

5. Results and Evaluations

We take shapes from the ABC dataset as input and sample
point clouds from them. These point clouds are then pro-
cessed through our PLLM pipeline to generate outputs. We
present qualitative results by comparing our outputs with
those produced by CAD-Recode (Figure 4), as well as re-
sults across different training iterations (Figure 5). We also
provide quantitative evaluations of Chamfer Distance, In-
tersection over Union (IoU), and program length in Figure 2
and Sections 5.1, 5.2, and 5.3.

5.1. Chamfer Distance Across Iterations

We report the best, average, and worst Chamfer Distances
across iterations in Figure 2(a). Each distance is computed
after normalizing the predicted and input shapes to a unit
bounding box (1%) and scaling by 103. The best and worst
scores correspond to the mean of the top 10 and bottom
10 shapes per iteration, respectively, while the average re-
flects the mean over all shapes. The Chamfer Distance gen-
erally decreases over the first four iterations, after which im-
provements plateau or slightly regress, likely due to the lim-
ited CAD operations supported by our base model, CAD-
Recode (see Section 4.1).

5.2. IoU Across Iterations

Another interesting metric to consider is the IoU across iter-
ations (Figure 2(b)), which is not directly optimized in our
framework. We do not intentionally select programs with
high IoU, as our objective focuses on minimizing the Cham-
fer Distance (CD). While IoU measures volumetric overlap,
CD evaluates surface alignment between the generated and
target shapes. In our results, we observe that IoU increases
during the first two iterations but decreases in later ones.

This behavior arises because IoU is not explicitly used as a
reward signal—thus, as the model focuses more on lower-
ing CD, it may overfit surface alignment without necessarily
improving volumetric consistency.

5.3. Program Length Distance Across Iterations

We analyze how average, longest, and shortest program
lengths evolve across iterations in Figure 2(c). Initially,
average length increases, allowing finer shape generation.
The baseline model, CAD-Recode, is limited to 768 to-
kens. When this cap is raised to 1200 tokens at iteration
0, program length grows slightly. From iteration 2 onward,
as longer programs are added through expansion (see Sec-
tion 3.2), the maximum length rises markedly, improving
the model’s capacity to represent detailed geometries.

-
Program ‘

Diversification

Ground Truth Shape

Program
Sampling

W

Paired Data

Baseline 1: (X, Z)

Baseline 2: (X,

~ H
Baseline 3: (X, 2) ¢ ---sfrossssssssssnnnnnnnnnnnasl

Figure 3. Overview of different baseline strategies compared in
our study. The figure illustrates how each baseline constructs its
(X, Z) training pairs. Baseline 1 uses the generated program and
its execution; Baseline 2 uses the input shape and its best gener-
ated program; and Baseline 3 samples within each batch, selecting
only the top 20% of high-performing pairs. Our proposed method
further introduces program expansion and shortening to generate
paired data (X, Z) that better align with the target distribution.

5.4. Experiments with Different Pseudo Label Pairs

To iteratively fine-tune the model for improved perfor-
mance, we require our paired dataset to satisfy four key cri-
teria:

1. The program represents the top-performing outputs,
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Table 1. Comparison of different pseudo-label and program
pairing strategies evaluated at the final iteration. Our pro-
posed method, which uses paired synthetic programs and their
executions for training, achieves the lowest Chamfer Distance
and demonstrates the most consistent performance improvement
across iterations.

Sampling Method Final Average CD
Our Method 9.73
CAD-Recode 26.12
Baseline 1 (best sample, its execution) 28.24
Baseline 2 (best sample, input shape) 10.28
Baseline 3 (In Batch Sampling) 22.84

ensuring that the model shifts its distribution toward

higher-quality generations.

2. The program Z, which serves as the label, can be exe-
cuted to produce the shape X, providing unambiguous
supervision.

3. The shape X distribution is close to the target distribu-
tion

4. The dataset introduces additional programmatic infor-
mation that enhances the model’s reasoning and genera-
tive ability.

Criterion (1) is automatically satisfied by the sampling
stage (Section 3.1), which consistently selects the best pro-
gram among all generated samples. Our method introduced
in Section 3.2, which expands and shortens programs and
uses the resulting diversified programs together with their
executions for training, automatically satisfies criteria (2)
and (4), while criterion (3) is only partially addressed.

In practice, it is impossible to satisfy all four crite-
ria simultaneously; only paired ground-truth programs and
shapes can fully meet them. For pseudo-labeling methods,
certain trade-offs are inevitable. In this subsection, we dis-
cuss alternative approaches (Figure 3) that fulfill different
subsets of these criteria. The results of these methods, eval-
uated at the final iteration, are presented in Table 1, where
our proposed method achieves the best overall performance.

5.4.1. Baseline 1: (best sample, its execution) pair

The first baseline method (red line in Figure 3) trains the
model using pairs of generated programs as Z and their
corresponding executions as X. However, this approach
actually degrades performance, as the model repeatedly ob-
serves shapes that lie outside the target distribution paired
with their generated programs, preventing it from making
meaningful improvements.

5.4.2. Baseline 2: (best sample, input shape) pair

The second baseline method (purple line in Figure 3) trains
the model using pairs of generated programs as Z and the
corresponding input shapes as X . In essence, this approach

performs a self-guided search within the model, allowing it
to train on its own best-available results at each iteration.
This method achieves noticeable improvements; however,
it compromises criterion (2), since the input shape and the
program are not perfectly matched.

5.4.3. Baseline 3: In Batch Sampling

The final baseline method extends from Baseline 2 by per-
forming sampling within each batch (blue dashed line in
Figure 3). Instead of using all data for the next iteration, we
select only the top 20% of samples based on performance.
Thus, while the next iteration is still trained using (best sam-
ple, input shape) pairs, lower-quality samples are excluded,
representing an improvement over the previous baseline.

However, in our experiments, we observed that this ap-
proach primarily enhances the model’s performance on the
best shapes. As the top-performing samples continue to im-
prove across iterations, the remaining 80% of shapes re-
ceive no updates, resulting in little to no improvement for
the lower-quality cases.

6. Conclusion

We presented PLLM, a self-training framework for un-
supervised fine-tuning of large language models in CAD
program synthesis. By iteratively generating, select-
ing, and refining pseudo-labeled CAD programs, PLLM
enables model improvement without requiring paired
shape—program datasets. Our approach combines knowl-
edge distillation and search-based pseudo-labeling to bridge
the gap between pre-trained CAD models and unlabeled
shape data. Empirical evaluations show that PLLM out-
performs the baseline CAD-Recode model in both geomet-
ric reconstruction quality and program diversity, achieving
lower Chamfer Distances across iterations while maintain-
ing valid and interpretable CAD code.

A major drawback of the pseudo-labeling approach is its
computational cost. The process involves multiple itera-
tions, each consisting of sampling, selection, and training
stages. In each iteration, beyond model training, the pro-
gram sampling and selection steps also require non-trivial
time. This overhead reflects the inherent cost of operating
without ground-truth programs.
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Figure 4. Comparison between our results and those produced by CAD-Recode, which correspond to the outputs from the first iteration of
our framework

LE e
311

Ground Truth Iteration O Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

|

|

|

|
X W KK
eva\ls
V\olats
KX AY LKS

|
)
\

BE XY R
|
SEX A Y Rik™
LYeoqat«

Figure 5. Results across different iterations, showing that the generated shapes gradually improve in quality as training progresses
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PLLM: Pseudo-Labeling Large Language Models for CAD Program Synthesis

Supplementary Material

6.1. CAD-Recode

CAD-Recode addresses the task of CAD reverse engineer-
ing by mapping a 3D input point cloud to executable CAD
code. The overall pipeline comprises two primary compo-
nents: (i) a point-cloud encoder (“point projector”’) which
downsamples the input point cloud, applies positional en-
coding and a shallow feed-forward network, and produces a
sequence of feature embeddings; and (ii) a language-model
decoder, which is a small-scale pretrained large-language
model (e.g., Qwen2-1.5B) adapted via a lightweight projec-
tion layer that accepts the point-cloud embeddings and gen-
erates CAD code (in Python, using the CadQuery library)
as output.

Training is done end-to-end on a large synthetic dataset
of over one million program—shape pairs: each pair com-
prises a point cloud sampled from executing a ground-truth
CAD script and the corresponding Python source code that
produced it. Teacher-forcing is used during training to
minimise token-level negative log-likelihood. At inference
time multiple candidate programs are decoded; among these
the one whose execution yields a point-cloud representa-
tion most closely matching the input (measured via Cham-
fer Distance) is selected as the final output. We show the
pipeline of CAD-Recode in Figure 6.

The CAD code is expressed in the CadQuery Python
scripting language, allowing interpretable, modular, and di-
rectly executable CAD representations rather than opaque
numeric vectors. The dataset is procedurally generated to
cover a broad variety of sketch-and-extrude operations, pro-
viding a scalable and controlled training supply.

6.2. Program Sampling

Given an input shape, we sample /0 candidate programs
from the LLM using stochastic decoding to encourage di-
versity while maintaining structural consistency. Specifi-
cally, we apply nucleus sampling with top_p = 0.8 and
top_k = 30, and set the temperature to 1. 2 to introduce
moderate randomness in token generation. This setup en-
sures that sampled programs differ in operation order, pa-
rameterization, or minor geometric variations, yet remain
semantically close to the input shape. In other words, the
generated candidates are diverse but not divergent—they
explore multiple plausible reconstructions without deviat-
ing excessively from the shape’s geometry or intended de-
sign semantics.

6.3. LoRA Fine-Tuning

We fine-tune the pretrained CAD-Recode model using Low-
Rank Adaptation (LoRA) to specialize it for longer and
more complex program generation conditioned on 3D point
clouds. The original CAD-Recode architecture supports a
maximum token length of 768. To encourage the model to
produce longer and more expressive programs, we extend
this limit to 1200 tokens, effectively expanding the language
capacity of the decoder while maintaining the same point
cloud resolution.

Our fine-tuning strategy preserves the model’s ability
to output syntactically valid and executable CadQuery
code. To achieve this, we apply LoRA updates only to
the middle transformer layers (layers 4-8), which primar-
ily govern high-level reasoning and compositional planning,
while keeping the bottom layers (responsible for tokeniza-
tion, geometric grounding, and syntax formation) frozen.
This design allows the model to adapt its semantic un-
derstanding of CAD programs without disrupting the sta-
ble syntax-generation capability of the pretrained backbone.
The LoRA configuration uses rank » = 8, a = 32, and
dropout p = 0.1, applied to both the self-attention and MLP
projections within the selected layers.

6.4. Program Expansion

In CadQuery, a workspace corresponds to a local coordi-
nate frame used for sketching and feature operations (e.g.,
extrude, cut, union). And each workspace encapsu-
lates a self-contained sequence of modeling steps that con-
tribute to the final solid geometry.

The base CAD-Recode output typically instantiates one
or two workspaces. We iteratively expand the program
by either (i) spawning a new workspace (creating a new
Workplane with its own procedurally generated sketch and
feature operations), or (ii) appending additional opera-
tions to an existing workspace. We cap the total number
of workspaces at Wy,,x = 5 to encourage modular but
compact program structure. Each iteration adds either 1
workspace with 2 CAD operations, or max 5 new opera-
tions but without new workspace created. This ensures the
program length grows gradually across iterations while re-
maining syntactically valid and executable.

6.5. Program Shortening

We shorten CadQuery programs by removing all top-level
boolean calls union, cut, and intersect from the ex-
pression, and leave the remainder intact. The procedure is
a single left-to-right pass over the expression that tracks (i)
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Figure 6. We show the pipeline of CAD-Recode, image from the orginal work.

719 the current parenthesis depth and (ii) whether the cursor is
720 inside a quoted string (with escape handling). Whenever the
721 cursor is not inside a string and the depth is zero, we test
722 for one of the boolean operator prefixes; upon a match, we
723 parse and skip the entire balanced-call payload (its match-
724 ing closing parenthesis), correctly handling nested paren-
725 theses and quoted substrings. After collecting all matched
726 call intervals, we rebuild the expression by dropping those
727 ranges and keeping everything else unchanged. This ap-
728 proach guarantees that only top-level boolean edits are re-
729 moved while nested calls and string literals are preserved.
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