
CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

PLLM: Pseudo-Labeling Large Language Models for CAD Program Synthesis

Anonymous CVPR submission

Paper ID *****

Abstract

Recovering Computer-Aided Design (CAD) programs from001
3D geometries is a widely studied problem. With the re-002
cent advancements in large language models (LLMs), sev-003
eral works have explored leveraging their strong symbolic004
reasoning capabilities for CAD program synthesis. How-005
ever, existing methods that train LLMs to generate CAD006
programs rely on supervised learning, whereas ground-007
truth CAD program datasets are often unavailable in prac-008
tice. We introduce PLLM : Pseudo-Labeling Large Lan-009
guage Models for CAD Program Synthesis, an unsupervised010
self-training framework that fine-tunes LLMs for CAD pro-011
gram generation without requiring paired supervision. Our012
method takes as input a pre-trained LLM capable of gen-013
erating CAD programs and a 3D shape dataset. The model014
iteratively refines the pre-trained LLM’s performance on the015
new dataset, achieving improved program synthesis quality016
without access to ground-truth CAD programs.017

1. Introduction018

Computer-Aided Design (CAD) is the industry standard for019
3D modeling in engineering and manufacturing. Design-020
ers typically construct models through a sequence of para-021
metric operations, which, when executed, produce bound-022
ary representations (B-reps) of 3D geometry. The inverse023
problem of recovering a CAD program from a given shape024
is also extensively studied. Recovering the program enables025
semantic editing, programmatic modification, and compact026
representation of 3D models.027

Previous approaches address this inverse problem by028
training lightweight neural networks to predict CAD opera-029
tions and their corresponding parameters [1, 5, 11, 52, 55].030
More recently, large language models (LLMs) have been031
explored for this reverse-engineering task due to their strong032
symbolic reasoning abilities and rapid progress in program033
synthesis [27, 30, 34, 43, 44]. However, existing methods034
all rely on supervised learning that requires ground-truth035
CAD programs. This reliance introduces two major chal-036
lenges: (1) when applying a model trained on one dataset037

to another without ground-truth programs, fine-tuning be- 038
comes difficult due to the absence of supervision; and (2) 039
the existence of multiple CAD programming languages 040
makes it challenging for a model trained on one grammar 041
to generalize to another. 042

In this work, we introduce a new framework to address 043
this problem. Formally, our system takes as input a pre- 044
trained LLM p(z |x,L) that generates a CAD program z 045
in language L from a shape x, where x is sampled from 046
a distribution S. Given another distribution of shapes S∗, 047
our goal is to fine-tune the pre-trained model to adapt it 048
to the new domain. The main challenge is that the model 049
may perform poorly on S∗ because it is not well adapted to 050
this distribution. Moreover, S∗ may lack ground-truth CAD 051
programs or include programs not expressed in L, making 052
direct supervised fine-tuning infeasible. 053

Our key observation is that the pre-trained LLM inher- 054
ently possesses the ability to generate programs for shapes 055
from the new domain in its original language L. However, 056
the generated results may be suboptimal. To address this, 057
our method samples programs from the pre-trained model, 058
executes them, and compares the outputs with the target 059
inputs. This process enables the model to learn from its 060
best-performing results, where the best programs serve as 061
pseudo-labels that progressively improve the model through 062
iterative self-training. Specifically, we use CAD-Recode 063
[34], which is trained on the DeepCAD dataset [49] and 064
outputs programs in the CadQuery language, as our pre- 065
trained LLM. We then fine-tune it on the ABC dataset [25], 066
a widely used benchmark that does not include ground-truth 067
CAD programs. 068

In summary, we propose a novel method to fine-tune ex- 069
isting LLMs for improved CAD program synthesis for new 070
domain in the absence of ground-truth supervision. Our key 071
contributions are as follows: 072

• We introduce PLLM, a self-training framework that fine- 073
tunes pre-trained LLMs on unlabeled 3D datasets by 074
jointly leveraging search and distillation to discover high- 075
quality pseudo programs. 076

• We develop a method to sample output programs from 077
LLMs and apply programmatic edits to generate diverse 078

1

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

variations, enriching supervision and improving model079
robustness across training iterations.080

• We validate our method by fine-tuning CAD-Recode081
(pre-trained on DeepCAD) on the ABC dataset—showing082
improvements in geometric fidelity.083

2. Related Works084

2.1. Self Training085

Our work primarily belongs to the broader category of un-086
supervised and weakly-supervised learning [7, 46]. For087
these families of tasks, many approaches resort to general-088
purpose policy gradient reinforcement learning [32, 38, 39,089
46, 57].However, as CAD programs are generally not dif-090
ferentiable, reinforcement learning methods are not appli-091
cable. Instead, we adopt a self-training approach, which092
has been widely used to improve model performance in093
weakly-supervised settings [31, 35, 53]. Recent advances094
further show that self-training and data-augmentation-based095
methods can enhance neural models across various do-096
mains [18, 22, 58].097

In the domain of visual program synthesis, self-training098
has emerged as an effective strategy for learning in the ab-099
sence of ground-truth program supervision [15, 19, 20]. Our100
program synthesis method can be seen as execution-guided101
[8, 12–14], where the training process its guided by the pre-102
dicted programs’ execution results rather than explicit su-103
pervision. Notably, PLAD [21] introduces a bootstrapped104
learning framework that leverages a pre-trained program105
generator to produce candidate programs for unseen shapes,106
which are then used to iteratively fine-tune the model. Our107
approach follows this paradigm, in which we treat our pre-108
train LLM as the the model, and CAD program synthesis as109
the task.110

2.2. Learning to Recover CAD Programs111

Our work also relates to the larger goal of reverse CAD112
engineering from diverse input modalities, such as voxel113
grids [26, 36, 40], point clouds [10, 17, 28, 28, 37, 41, 48,114
49], and boundary representations [52]. Early approaches115
relied on heuristic algorithms or lightweight neural net-116
works, whereas recent works have begun to explore large117
language models for this task [2–4, 16, 29, 33, 45, 50, 54,118
56] given their strong symbolic reasoning abilities. Our119
method falls within this family of approaches.120

However, existing methods [23, 24, 27, 34, 43, 51]121
rely on datasets containing paired ground-truth CAD pro-122
grams and shapes. In practice, however, high-quality CAD123
datasets such as [6, 25, 42, 47] are limited, and many124
of them lack ground-truth programs. We adopt CAD-125
Recode [34] as the pre-trained LLM for our method, and126
fine-tunes on it.127

3. Method 128

In this section, we formally describe the PLLM framework, 129
which takes input of the following components: 130

• (1) Pre-trained LLM: A model p(z |x,L) capable of 131
generating CAD programs z from input shapes x using 132
the language L, where x is drawn from a source distribu- 133
tion S. 134

• (2) Training dataset: A new dataset of shapes S∗, repre- 135
senting a target distribution that differs from S. 136

• (3) Black-box executor: An executor E that can execute 137
generated programs z to produce corresponding 3D ge- 138
ometries. 139

The objective of the PLLM framework is to fine-tune the 140
pre-trained model on the new distribution S∗ to obtain an 141
updated model p′. For an input shape x∗ ∈ S∗, the execu- 142
tion E(z∗), where z∗ ∼ p′(z |x∗,L), should yield a shape 143
that achieves a higher reward (in our system, a lower Cham- 144
fer Distance) when compared to the execution of the origi- 145
nal model’s output on the same input x∗. 146

We illustrate the overall PLLM procedure in Figure 1 147
To fine-tune p(z |x,L) toward the target distribution S∗, 148
PLLM iteratively performs four key steps. First, the pre- 149
trained model p(z |x,L) is used to sample multiple candi- 150
date programs for each input shape x∗ ∈ S∗ (section 3.1). 151
Second, for each input shape, the best sampled program is 152
identified based on the Chamfer Distance between its exe- 153
cution E(z) and the target shape x∗ (section 3.1). Third, 154
programmatic edits are applied to the selected programs to 155
generate additional variants, enabling the model to observe 156
a broader range of valid programs (section 3.2). Finally, 157
the LLM is fine-tuned on these edited programs and their 158
corresponding executions (section 3.3). 159

Through successive iterations, these steps bootstrap 160
one another, forming a virtuous cycle: improvements in 161
p(z |x,L) lead to higher-quality (X,Z) pairs that better re- 162
flect the target distribution S∗, and training on these im- 163
proved pairs further refines the model toward S∗. 164

3.1. Program Sampling 165

Given an input shape x∗, the pre-trained LLM p(z |x∗,L) 166
generates a set of k = 10 candidate programs {zi}ki=1 167
through stochastic sampling (detailed in Appendix 6.2). 168
Since the generation process is non-deterministic, multi- 169
ple samples encourage exploration of diverse program can- 170
didates, allowing the selection of the best among them. 171
Across iterations, this diversity enables the model to refine 172
its output distribution toward higher-quality and more accu- 173
rate programs. This process is analogous to self-distillation, 174
where the model iteratively learns from its own best gener- 175
ations. 176

To select the best program, we compute the Chamfer 177
Distance between each execution E(zi) and the target shape 178

2

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Sampled Results

Best Sample

(a) Whole Pipeline (b) Program Length Diversification

Input

......

Program Synthesis

Program Synthesis

Train for next iteration

Program Expansion

Program Shortening

Output (X, Z)

execution

execution

Best Program

(based on Chamfer Distance)

execution

Figure 1. We show the overall pipeline in (a). At each iteration, the model first takes an input shape and samples multiple candidate
programs. The selection algorithm then identifies the best program–shape pairs, which are used for training in the next iteration. (b)
illustrates the details of the program length diversification process, where we perform both program expansion and shortening to create
additional variants. The edited programs serve as labels Z, and their corresponding executions are treated as inputs X to form the new
training dataset.

x∗, choosing the candidate with the lowest value as the op-179
timal program z∗. If multiple candidates yield nearly iden-180
tical reconstructions (diff Chamfer Distance < 1 × 10−4),181
preference is given to shorter programs to promote concise182
and efficient geometric representations.183

3.2. Program Length Diversification184

The pre-trained model may not capture the range of pro-185
grams required by the new distribution S∗, limiting its abil-186
ity to represent shapes of varying complexity (see detailed187
discussion in Section 5.3). To address this, we synthetically188
expand (algorithm detailed in Appendix 6.4) or shorten (al-189
gorithm detailed in Appendix 6.5) the selected programs190
to create more variety. This broader length distribution191
enables the model to generalize across different structural192
complexities and thus adapt to inputs with a larger com-193
plexity variance. This process is shown in Figure 1(b).194

3.3. Training Data Pairs195

We perform LoRA fine-tuning on the LLM using both the196
extended and shortened programs as Z, paired with their197
corresponding executions as X (additional training details198
are provided in Appendix 6.3). A key advantage of this199
design is that in each (X,Z) pair, the shape X is the ex-200
act execution result of program Z, ensuring consistent su-201
pervision during fine-tuning. Moreover, incorporating both202
extended and shortened programs introduces greater vari-203
ation in program lengths, which enhances the model’s ca-204
pacity to generalize across different levels of program com-205
plexity. This strategy maintains training stability while en-206
riching the model’s capacity to produce a wider variety of207
program lengths through iterative updates. We present addi-208
tional experiments using alternative data pair configurations209
in Section 5.4.210

4. Implementation 211

In our implementation, we use CAD-Recode [34] as the 212
pre-trained model, which was trained on the DeepCAD 213
dataset [49]. We use the ABC dataset [25] as the new do- 214
main S∗, and CadQuery together with its interpreter [9] as 215
the execution environment. 216

4.1. CAD-Recode 217

CAD-Recode [34] is originally trained on the DeepCAD 218
dataset [49], containing only sketch–extrude CAD pro- 219
grams (see Appendix 6.1 architecture for details). How- 220
ever, the ABC dataset [25] requires more types of opera- 221
tions than that. So our goal is to approximate the shapes in 222
ABC-dataset using only sketch–extrude operations instead 223
of reconstruct the exact same shapes. 224

Another limitation of CAD-Recode is that it caps its out- 225
put program length at 768 tokens, which is insufficient for 226
capturing the fine geometric details of many shapes in the 227
ABC dataset. We extend the maximum program length to 228
1200 tokens and apply our program diversification strategy 229
to expose the model to longer samples during training, en- 230
abling it to gradually generate more detailed and complex 231
programs. 232

4.2. Computational Cost 233

We use the first 15 batches from the ABC dataset, sam- 234
pling 5,000 shapes from each batch, for total 75,000 shapes. 235
However, CAD-Recode is able to produce executable pro- 236
grams for only 71,784 shapes, all experiments are con- 237
ducted on this subset. 238

We use a system with four NVIDIA L40S GPUs (each 239
with 48 GB of memory) and an AMD EPYC 7R13 CPU 240
(24 cores, 48 threads, 2.45 GHz). Running 6 self-training 241

3

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Iterations

Worst IoU

Average IoU

Best IoU

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1 2 3 4 5

IoU

1.0 1.0 1.0 1.0 1.0 1.0

0.326

0.414
0.478 0.445

0.423
0.419

0.045 0.068 0.072 0.064 0.058 0.067

Iterations

(a) Chamfer Distance across Iterations (b) IoU across Iterations (c) Program Length across Iterations

Worst CD

Average CD

0
Best CD

20

0.01

10
5

15

150

~

~

~

200

100

400

21 43 5

Chamfer Distance (x1000)

143.5

384.5

177.4
169.8

26.12

129.1

0.098 0.135 0.0068 <0.001 <0.001

12.84

121.3

10.32 9.91 9.739.77

0.0052

Longest
Program

Average

Program

0

Shortest

Program50

425

450

800

400

~

1000

~

900

Iterations

1100

1200

3 4 5

Tokens

2

1087

791

108710871087

1132

406.2

43 43 43
54

43

1132

420.0
430.4

49

443.9

423.9
435.8

1

Figure 2. We compare quantitative results across iterations: (a) Chamfer Distance, (b) IoU, and (c) Program Length.

iterations takes 150 hours in total (around 25 hours per it-242
eration). In each iteration, about 12 hours are spent on sam-243
pling programs from the dataset, 10 hours on program selec-244
tion (execution, Chamfer distance computation, and length245
diversification), and 2 hours fine-tuning the language model246
for four epochs.247

5. Results and Evaluations248

We take shapes from the ABC dataset as input and sample249
point clouds from them. These point clouds are then pro-250
cessed through our PLLM pipeline to generate outputs. We251
present qualitative results by comparing our outputs with252
those produced by CAD-Recode (Figure 4), as well as re-253
sults across different training iterations (Figure 5). We also254
provide quantitative evaluations of Chamfer Distance, In-255
tersection over Union (IoU), and program length in Figure 2256
and Sections 5.1, 5.2, and 5.3.257

5.1. Chamfer Distance Across Iterations258

We report the best, average, and worst Chamfer Distances259
across iterations in Figure 2(a). Each distance is computed260
after normalizing the predicted and input shapes to a unit261
bounding box (13) and scaling by 103. The best and worst262
scores correspond to the mean of the top 10 and bottom263
10 shapes per iteration, respectively, while the average re-264
flects the mean over all shapes. The Chamfer Distance gen-265
erally decreases over the first four iterations, after which im-266
provements plateau or slightly regress, likely due to the lim-267
ited CAD operations supported by our base model, CAD-268
Recode (see Section 4.1).269

5.2. IoU Across Iterations270

Another interesting metric to consider is the IoU across iter-271
ations (Figure 2(b)), which is not directly optimized in our272
framework. We do not intentionally select programs with273
high IoU, as our objective focuses on minimizing the Cham-274
fer Distance (CD). While IoU measures volumetric overlap,275
CD evaluates surface alignment between the generated and276
target shapes. In our results, we observe that IoU increases277
during the first two iterations but decreases in later ones.278

This behavior arises because IoU is not explicitly used as a 279
reward signal—thus, as the model focuses more on lower- 280
ing CD, it may overfit surface alignment without necessarily 281
improving volumetric consistency. 282

5.3. Program Length Distance Across Iterations 283

We analyze how average, longest, and shortest program 284
lengths evolve across iterations in Figure 2(c). Initially, 285
average length increases, allowing finer shape generation. 286
The baseline model, CAD-Recode, is limited to 768 to- 287
kens. When this cap is raised to 1200 tokens at iteration 288
0, program length grows slightly. From iteration 2 onward, 289
as longer programs are added through expansion (see Sec- 290
tion 3.2), the maximum length rises markedly, improving 291
the model’s capacity to represent detailed geometries. 292

Program

Sampling

Program

Diversification

Best Sample

Our Method : (X , Z)

Baseline 2 : (X , Z)

Baseline 1 : (X , Z)

Paired Data

Baseline 3 : (X , Z)

Ground Truth Shape

Figure 3. Overview of different baseline strategies compared in
our study. The figure illustrates how each baseline constructs its
(X,Z) training pairs. Baseline 1 uses the generated program and
its execution; Baseline 2 uses the input shape and its best gener-
ated program; and Baseline 3 samples within each batch, selecting
only the top 20% of high-performing pairs. Our proposed method
further introduces program expansion and shortening to generate
paired data (X,Z) that better align with the target distribution.

5.4. Experiments with Different Pseudo Label Pairs 293

To iteratively fine-tune the model for improved perfor- 294
mance, we require our paired dataset to satisfy four key cri- 295
teria: 296

1. The program represents the top-performing outputs, 297

4

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Comparison of different pseudo-label and program
pairing strategies evaluated at the final iteration. Our pro-
posed method, which uses paired synthetic programs and their
executions for training, achieves the lowest Chamfer Distance
and demonstrates the most consistent performance improvement
across iterations.

Sampling Method Final Average CD

Our Method 9.73
CAD-Recode 26.12
Baseline 1 (best sample, its execution) 28.24
Baseline 2 (best sample, input shape) 10.28
Baseline 3 (In Batch Sampling) 22.84

ensuring that the model shifts its distribution toward298
higher-quality generations.299

2. The program Z, which serves as the label, can be exe-300
cuted to produce the shape X , providing unambiguous301
supervision.302

3. The shape X distribution is close to the target distribu-303
tion304

4. The dataset introduces additional programmatic infor-305
mation that enhances the model’s reasoning and genera-306
tive ability.307

Criterion (1) is automatically satisfied by the sampling308
stage (Section 3.1), which consistently selects the best pro-309
gram among all generated samples. Our method introduced310
in Section 3.2, which expands and shortens programs and311
uses the resulting diversified programs together with their312
executions for training, automatically satisfies criteria (2)313
and (4), while criterion (3) is only partially addressed.314

In practice, it is impossible to satisfy all four crite-315
ria simultaneously; only paired ground-truth programs and316
shapes can fully meet them. For pseudo-labeling methods,317
certain trade-offs are inevitable. In this subsection, we dis-318
cuss alternative approaches (Figure 3) that fulfill different319
subsets of these criteria. The results of these methods, eval-320
uated at the final iteration, are presented in Table 1, where321
our proposed method achieves the best overall performance.322

5.4.1. Baseline 1: (best sample, its execution) pair323

The first baseline method (red line in Figure 3) trains the324
model using pairs of generated programs as Z and their325
corresponding executions as X . However, this approach326
actually degrades performance, as the model repeatedly ob-327
serves shapes that lie outside the target distribution paired328
with their generated programs, preventing it from making329
meaningful improvements.330

5.4.2. Baseline 2: (best sample, input shape) pair331

The second baseline method (purple line in Figure 3) trains332
the model using pairs of generated programs as Z and the333
corresponding input shapes as X . In essence, this approach334

performs a self-guided search within the model, allowing it 335
to train on its own best-available results at each iteration. 336
This method achieves noticeable improvements; however, 337
it compromises criterion (2), since the input shape and the 338
program are not perfectly matched. 339

5.4.3. Baseline 3: In Batch Sampling 340

The final baseline method extends from Baseline 2 by per- 341
forming sampling within each batch (blue dashed line in 342
Figure 3). Instead of using all data for the next iteration, we 343
select only the top 20% of samples based on performance. 344
Thus, while the next iteration is still trained using (best sam- 345
ple, input shape) pairs, lower-quality samples are excluded, 346
representing an improvement over the previous baseline. 347

However, in our experiments, we observed that this ap- 348
proach primarily enhances the model’s performance on the 349
best shapes. As the top-performing samples continue to im- 350
prove across iterations, the remaining 80% of shapes re- 351
ceive no updates, resulting in little to no improvement for 352
the lower-quality cases. 353

6. Conclusion 354

We presented PLLM, a self-training framework for un- 355
supervised fine-tuning of large language models in CAD 356
program synthesis. By iteratively generating, select- 357
ing, and refining pseudo-labeled CAD programs, PLLM 358
enables model improvement without requiring paired 359
shape–program datasets. Our approach combines knowl- 360
edge distillation and search-based pseudo-labeling to bridge 361
the gap between pre-trained CAD models and unlabeled 362
shape data. Empirical evaluations show that PLLM out- 363
performs the baseline CAD-Recode model in both geomet- 364
ric reconstruction quality and program diversity, achieving 365
lower Chamfer Distances across iterations while maintain- 366
ing valid and interpretable CAD code. 367

A major drawback of the pseudo-labeling approach is its 368
computational cost. The process involves multiple itera- 369
tions, each consisting of sampling, selection, and training 370
stages. In each iteration, beyond model training, the pro- 371
gram sampling and selection steps also require non-trivial 372
time. This overhead reflects the inherent cost of operating 373
without ground-truth programs. 374

5

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Ground Truth

Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 Shape 7

Ours

CAD-Recode

Figure 4. Comparison between our results and those produced by CAD-Recode, which correspond to the outputs from the first iteration of
our framework

Ground Truth Iteration 0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Figure 5. Results across different iterations, showing that the generated shapes gradually improve in quality as training progresses

6

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References375

[1] Sk Aziz Ali, Mohammad Sadil Khan, and Didier Stricker.376
Brep boundary and junction detection for cad reverse engi-377
neering. In IEEE International Conference on Computing378
and Machine Intelligence (ICMI), 2024. 1379

[2] Kamel Alrashedy, Pradyumna Tambwekar, Zulfiqar Zaidi,380
Megan Langwasser, Wei Xu, and Matthew C. Gombo-381
lay. Generating cad code with vision-language models382
for 3d designs. arXiv preprint arXiv:2410.05340, 2024.383
arXiv:2410.05340. 2384

[3] Kamel Alrashedy, Pradyumna Tambwekar, Zulfiqar Zaidi,385
Megan Langwasser, Wei Xu, and Matthew C. Gombolay.386
Generating cad code with vision-language models for 3d de-387
signs. In Proceedings of the International Conference on388
Learning Representations (ICLR), 2025. Preprint available389
via IEEE Xplore (Document 10890248).390

[4] Akshay Badagabettu, Sai Sravan Yarlagadda, and391
Amir Barati Farimani. Query2cad: Generating cad models392
using natural language queries. CoRR, abs/2406.00144,393
2024. 2394

[5] Pal Benko and J et al. Faigl. Algorithms for reverse engineer-395
ing boundary representation (b-rep) solid models. Technical396
report, Berkeley EECS / UC Berkeley, 2001. 1397

[6] Pratyush Bharadwaj, Paul Willberg, Faizan Ahmad, Adeel398
Ahmad, et al. Simjeb: Simulated joint engineering bench-399
mark. https://simjeb.github.io, 2023. Accessed:400
2025-07-12. 2401

[7] Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh402
Singh, and Pushmeet Kohli. Leveraging grammar and re-403
inforcement learning for neural program synthesis. In Pro-404
ceedings of the International Conference on Learning Rep-405
resentations (ICLR), 2018. 2406

[8] Xinyun Chen, Chang Liu, and Dawn Song. Execution-407
guided neural program synthesis. In Proceedings of the In-408
ternational Conference on Learning Representations (ICLR),409
2019. 2410

[9] CadQuery developers. Cadquery — a python parametric cad411
scripting framework. 3412

[10] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg,413
Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and414
Wojciech Matusik. Inversecsg: Automatic conversion of 3d415
models to csg trees. ACM Transactions on Graphics (Proc.416
SIGGRAPH Asia, 37(6), 2018. 2417

[11] Elona Dupont, Kseniya Cherenkova, Anis Kacem, Sk Aziz418
Ali, Ilya Arzhannikov, Gleb Gusev, and Djamila Aouada.419
Cadops-net: Jointly learning cad operation types and420
steps from boundary-representations. In arXiv preprint421
arXiv:2208.10555, 2022. 1422

[12] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and423
Josh Tenenbaum. Learning to infer graphics programs from424
hand-drawn images. In Advances in Neural Information Pro-425
cessing Systems (NeurIPS), 2018. 2426

[13] Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh427
Tenenbaum, and Armando Solar-Lezama. Write, execute,428
assess: Program synthesis with a repl. In Advances in Neu-429
ral Information Processing Systems (NeurIPS), 2019.430

[14] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias 431
Sable-Meyer, Luc Cary, Lucas Morales, Luke Hewitt, Ar- 432
mando Solar-Lezama, and Joshua B. Tenenbaum. Dream- 433
coder: Growing generalizable, interpretable knowledge with 434
wake–sleep bayesian program learning. arXiv preprint 435
arXiv:2006.08381, 2020. 2 436

[15] Aditya Ganeshan, R. Kenny Jones, and Daniel Ritchie. Im- 437
proving unsupervised visual program inference with code 438
rewriting families. In Proceedings of the IEEE/CVF Inter- 439
national Conference on Computer Vision, 2023. 2 440

[16] Yandong Guan, Xilin Wang, Xingxi Ming, Jing Zhang, 441
Dong Xu, and Qian Yu. Cad-coder: Text-to-cad generation 442
with chain-of-thought and geometric reward. arXiv preprint 443
arXiv:2505.19713, 2025. arXiv:2505.19713. 2 444

[17] Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong, 445
and Baining Guo. Complexgen: Cad reconstruction by b-rep 446
chain complex generation. ACM Transactions on Graphics 447
(SIGGRAPH), 41(4), 2022. 2 448

[18] Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ran- 449
zato. Revisiting self-training for neural sequence generation. 450
In Proceedings of the International Conference on Learning 451
Representations (ICLR), 2020. 2 452

[19] Robert Jones, Daniel Ritchie, and Armando Solar-Lezama. 453
Shapecoder: Discovering abstractions for visual programs 454
from unstructured primitives. ACM Transactions on Graph- 455
ics (TOG), 42(4):1–13, 2023. 2 456

[20] Robert Jones, Shoubhik Bhat, Daniel Ritchie, and Armando 457
Solar-Lezama. Learning to edit visual programs with self- 458
supervision. arXiv preprint arXiv:2406.02383, 2024. 2 459

[21] R. Kenny Jones, Homer Walke, and Daniel Ritchie. Plad: 460
Learning to infer shape programs with pseudo-labels and ap- 461
proximate distributions. CVPR, 2022. Revised version v4, 462
22 Mar 2022. 2 463

[22] Jacob Kahn, Ann Lee, and Awni Hannun. Self-training for 464
end-to-end speech recognition. In ICASSP 2020 - 2020 IEEE 465
International Conference on Acoustics, Speech and Signal 466
Processing (ICASSP), pages 7084–7088. IEEE, 2020. 2 467

[23] Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, 468
Kseniya Cherenkova, Anis Kacem, and Djamila Aouada. 469
Cad-signet: Cad language inference from point clouds using 470
layer-wise sketch instance guided attention. CVPR, 2024. 2 471

[24] Muhammad Tayyab Khan, Lequn Chen, Ye Han Ng, Wenhe 472
Feng, Nicholas Yew Jin Tan, and Seung Ki Moon. Leverag- 473
ing vision-language models for manufacturing feature recog- 474
nition in cad designs. arXiv preprint arXiv:2411.02810, 475
2024. 2 476

[25] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis 477
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa, 478
Denis Zorin, and Daniele Panozzo. Abc: A big cad model 479
dataset for geometric deep learning. In The IEEE Conference 480
on Computer Vision and Pattern Recognition (CVPR), 2019. 481
1, 2, 3 482

[26] Joseph George Lambourne, Karl Willis, Pradeep Kumar Ja- 483
yaraman, Longfei Zhang, Aditya Sanghi, and Kamal Rahimi 484
Malekshan. Reconstructing editable prismatic cad from 485
rounded voxel models. In SIGGRAPH Asia Conference Pa- 486
pers, 2022. 2 487

7

https://simjeb.github.io

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[27] Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, Guichun488
Zhou, and Xiangdong Zhou. Cad-llama: Leveraging large489
language models for computer-aided design parametric 3d490
model generation. arXiv preprint arXiv:2505.04481, 2025.491
1, 2492

[28] Yujia Liu, Anton Obukhov, Jan Dirk Wegner, and Konrad493
Schindler. Point2cad: Reverse engineering cad models from494
3d point clouds. In Proceedings of the IEEE/CVF Confer-495
ence on Computer Vision and Pattern Recognition (CVPR),496
pages 1540–1550, 2024. 2497

[29] Liane Makatura, Michael Foshey, Bohan Wang, Felix498
Hähnlein, Pingchuan Ma, Bolei Deng, Megan Tjandra-499
suwita, Andrew Spielberg, Crystal Elaine Owens, Pe-500
ter Yichen Chen, Allan Zhao, Amy Zhu, Wil J. Norton,501
Edward Gu, Joshua Jacob, Yifei Li, Adriana Schulz, and502
Wojciech Matusik. How can large language models help503
humans in design and manufacturing? arXiv preprint504
arXiv:2307.14377, 2023. arXiv:2307.14377. 2505

[30] Dimitrios Mallis, Ahmet Serdar Karadeniz, Sebastian506
Cavada, Danila Rukhovich, Niki Foteinopoulou, Kseniya507
Cherenkova, Anis Kacem, and Djamila Aouada. Cad-508
assistant: Tool-augmented vllms as generic cad task solvers.509
ICCV, 2025. arXiv:2412.13810. 1510

[31] David McClosky, Eugene Charniak, and Mark Johnson. Ef-511
fective self-training for parsing. In Proceedings of the Hu-512
man Language Technology Conference of the NAACL, Main513
Conference, pages 152–159, New York City, USA, 2006. As-514
sociation for Computational Linguistics. 2515

[32] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza,516
Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,517
and Koray Kavukcuoglu. Asynchronous methods for deep518
reinforcement learning. In International Conference on Ma-519
chine Learning, pages 1928–1937, 2016. 2520

[33] Felix Ocker, Stefan Menzel, Ahmed Sadik, and Thiago521
Rios. From idea to cad: A language model-driven multi-522
agent system for collaborative design. arXiv preprint523
arXiv:2503.04417, 2025. 2524

[34] Danila Rukhovich, Elona Dupont, Dimitrios Mallis, Kseniya525
Cherenkova, Anis Kacem, and Djamila Aouada. Cad-recode:526
Reverse engineering cad code from point clouds. ICCV,527
2025. 1, 2, 3528

[35] H. Scudder. Probability of error of some adaptive pattern-529
recognition machines. IEEE Transactions on Information530
Theory, 11(3):363–371, 1965. 2531

[36] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos532
Kalogerakis, and Subhransu Maji. Csgnet: Neural shape533
parser for constructive solid geometry. In IEEE Conference534
on Computer Vision and Pattern Recognition (CVPR), 2018.535
2536

[37] Gopal Sharma, Difan Liu, Evangelos Kalogerakis,537
Subhransu Maji, Siddhartha Chaudhuri, and Radomı́r538
Měch. Parsenet: A parametric surface fitting network for 3d539
point clouds. In Proc. European Conference on Computer540
Vision (ECCV), 2020. 2541

[38] David Silver, Guy Lever, Nicolas Heess, Thomas Degris,542
Daan Wierstra, and Martin Riedmiller. Deterministic pol-543
icy gradient algorithms. In International Conference on Ma-544
chine Learning, pages 387–395, 2014. 2545

[39] Richard S. Sutton, David A. McAllester, Satinder P. Singh, 546
and Yishay Mansour. Policy gradient methods for reinforce- 547
ment learning with function approximation. In Advances in 548
Neural Information Processing Systems, pages 1057–1063, 549
2000. 2 550

[40] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, 551
William T. Freeman, Joshua B. Tenenbaum, and Jiajun Wu. 552
Learning to infer and execute 3d shape programs. arXiv, 553
2019. Presented at ICLR 2019. 2 554

[41] Mikaela Angelina Uy, Yen yu Chang, Minhyuk Sung, 555
Purvi Goel, Joseph Lambourne, Tolga Birdal, and Leonidas 556
Guibas. Point2cyl: Reverse engineering 3d objects from 557
point clouds to extrusion cylinders. In Conference on Com- 558
puter Vision and Pattern Recognition (CVPR), 2022. 2 559

[42] Aayush Vardhan, Rishabh Sahay, Abhishek Pandey, et al. 560
Mcm: A mechanical components dataset for geometric deep 561
learning. arXiv preprint arXiv:2306.09053, 2023. 2 562

[43] Ruiyu Wang, Yu Yuan, Shizhao Sun, and Jiang Bian. Text- 563
to-cad generation through infusing visual feedback in large 564
language models. ICML, 2025. 1, 2 565

[44] Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu, 566
Yanzhou Zhang, and Jie Yang. Cad-gpt: Synthesising cad 567
construction sequence with spatial reasoning-enhanced mul- 568
timodal llms. arXiv preprint arXiv:2412.19663, 2024. 1 569

[45] Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu, 570
Yanzhou Zhang, and Jie Yang. Cad-gpt: Synthesising cad 571
construction sequence with spatial reasoning-enhanced mul- 572
timodal llms. AAAI, 2025. Accepted at AAAI 2025 (Vol. 39, 573
No. 8, pp. 7880–7888). 2 574

[46] Ronald J. Williams. Simple statistical gradient-following al- 575
gorithms for connectionist reinforcement learning. Machine 576
Learning, 8:229–256, 1992. 2 577

[47] Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao 578
Du, Joseph G. Lambourne, Armando Solar-Lezama, and 579
Wojciech Matusik. Fusion 360 gallery: A dataset and en- 580
vironment for programmatic cad construction from human 581
design sequences. ACM Transactions on Graphics (TOG), 582
40(4):1–21, 2021. 2 583

[48] Q. Wu, K. Xu, and J. Wang. Constructing 3d csg models 584
from 3d raw point clouds. Computer Graphics Forum, 37 585
(5), 2018. 2 586

[49] Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A 587
deep generative network for computer-aided design models. 588
ICCV, 2021. 1, 2, 3 589

[50] Sifan Wu, Amir Khasahmadi, Mor Katz, Pradeep Kumar Ja- 590
yaraman, Yewen Pu, Karl Willis, and Bang Liu. Cad-llm: 591
Large language model for cad generation. In NeurIPS Work- 592
shop on Machine Learning for Creativity and Design, 2023. 593
Workshop, NeurIPS 2023, New Orleans, LA. 2 594

[51] Jingwei Xu, Zibo Zhao, Chenyu Wang, Wen Liu, 595
Yi Ma, and Shenghua Gao. Cad-mllm: Unifying 596
multimodality-conditioned cad generation with mllm. arXiv 597
preprint arXiv:2411.04954, 2025. 2 598

[52] Xianghao Xu, Wenzhe Peng, Chin-Yi Cheng, Karl D. D. 599
Willis, and Daniel Ritchie. Inferring CAD mod- 600
eling sequences using zone graphs. arXiv preprint 601
arXiv:2104.03900, 2021. Submitted 30 Mar 2021; revised 602
20 Apr 2021. 1, 2 603

8

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[53] David Yarowsky. Unsupervised word sense disambiguation604
rivaling supervised methods. In Proceedings of the 33rd An-605
nual Meeting of the Association for Computational Linguis-606
tics, pages 189–196, Cambridge, Massachusetts, USA, 1995.607
Association for Computational Linguistics. 2608

[54] Licheng Zhang, Bach Le, Naveed Akhtar, Siew-Kei Lam,609
and Tuan Ngo. Large language models for computer-aided610
design: A survey. arXiv preprint arXiv:2505.08137, 2025.611
arXiv:2505.08137. 2612

[55] Shengdi Zhou, Tianyi Tang, and Bin Zhou. Cadparser: A613
learning approach of sequence modeling for b-rep cad. In614
Proceedings of the Thirty-Second International Joint Con-615
ference on Artificial Intelligence (IJCAI), 2023. 1616

[56] Haotian Zhu, Guyue Zhang, Zekun Hao, Zipeng Gao,617
Hengyang Zhao, Yifei Ren, Qingyang Wu, Xuan Luo, Jia-618
hao Zhang, Masha Shugrina, and Xinchen Yan. Text2cad:619
A large-scale benchmark for language-driven cad modeling.620
arXiv preprint arXiv:2409.17106, 2024. 2621

[57] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and622
Anind K. Dey. Maximum entropy inverse reinforcement623
learning. In AAAI Conference on Artificial Intelligence,624
pages 1433–1438, 2008. 2625

[58] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao626
Liu, Ekin D. Cubuk, and Quoc V. Le. Rethinking pre-training627
and self-training. arXiv preprint arXiv:2006.06882, 2020. 2628

9

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

PLLM: Pseudo-Labeling Large Language Models for CAD Program Synthesis

Supplementary Material

6.1. CAD-Recode629

CAD-Recode addresses the task of CAD reverse engineer-630
ing by mapping a 3D input point cloud to executable CAD631
code. The overall pipeline comprises two primary compo-632
nents: (i) a point-cloud encoder (“point projector”) which633
downsamples the input point cloud, applies positional en-634
coding and a shallow feed-forward network, and produces a635
sequence of feature embeddings; and (ii) a language-model636
decoder, which is a small-scale pretrained large-language637
model (e.g., Qwen2-1.5B) adapted via a lightweight projec-638
tion layer that accepts the point-cloud embeddings and gen-639
erates CAD code (in Python, using the CadQuery library)640
as output.641

Training is done end-to-end on a large synthetic dataset642
of over one million program–shape pairs: each pair com-643
prises a point cloud sampled from executing a ground-truth644
CAD script and the corresponding Python source code that645
produced it. Teacher-forcing is used during training to646
minimise token-level negative log-likelihood. At inference647
time multiple candidate programs are decoded; among these648
the one whose execution yields a point-cloud representa-649
tion most closely matching the input (measured via Cham-650
fer Distance) is selected as the final output. We show the651
pipeline of CAD-Recode in Figure 6.652

The CAD code is expressed in the CadQuery Python653
scripting language, allowing interpretable, modular, and di-654
rectly executable CAD representations rather than opaque655
numeric vectors. The dataset is procedurally generated to656
cover a broad variety of sketch-and-extrude operations, pro-657
viding a scalable and controlled training supply.658

6.2. Program Sampling659

Given an input shape, we sample 10 candidate programs660
from the LLM using stochastic decoding to encourage di-661
versity while maintaining structural consistency. Specifi-662
cally, we apply nucleus sampling with top p = 0.8 and663
top k = 30, and set the temperature to 1.2 to introduce664
moderate randomness in token generation. This setup en-665
sures that sampled programs differ in operation order, pa-666
rameterization, or minor geometric variations, yet remain667
semantically close to the input shape. In other words, the668
generated candidates are diverse but not divergent—they669
explore multiple plausible reconstructions without deviat-670
ing excessively from the shape’s geometry or intended de-671
sign semantics.672

6.3. LoRA Fine-Tuning 673

We fine-tune the pretrained CAD-Recode model using Low- 674
Rank Adaptation (LoRA) to specialize it for longer and 675
more complex program generation conditioned on 3D point 676
clouds. The original CAD-Recode architecture supports a 677
maximum token length of 768. To encourage the model to 678
produce longer and more expressive programs, we extend 679
this limit to 1200 tokens, effectively expanding the language 680
capacity of the decoder while maintaining the same point 681
cloud resolution. 682

Our fine-tuning strategy preserves the model’s ability 683
to output syntactically valid and executable CadQuery 684
code. To achieve this, we apply LoRA updates only to 685
the middle transformer layers (layers 4–8), which primar- 686
ily govern high-level reasoning and compositional planning, 687
while keeping the bottom layers (responsible for tokeniza- 688
tion, geometric grounding, and syntax formation) frozen. 689
This design allows the model to adapt its semantic un- 690
derstanding of CAD programs without disrupting the sta- 691
ble syntax-generation capability of the pretrained backbone. 692
The LoRA configuration uses rank r = 8, α = 32, and 693
dropout p = 0.1, applied to both the self-attention and MLP 694
projections within the selected layers. 695

6.4. Program Expansion 696

In CadQuery, a workspace corresponds to a local coordi- 697
nate frame used for sketching and feature operations (e.g., 698
extrude, cut, union). And each workspace encapsu- 699
lates a self-contained sequence of modeling steps that con- 700
tribute to the final solid geometry. 701

The base CAD-Recode output typically instantiates one 702
or two workspaces. We iteratively expand the program 703
by either (i) spawning a new workspace (creating a new 704
Workplane with its own procedurally generated sketch and 705
feature operations), or (ii) appending additional opera- 706
tions to an existing workspace. We cap the total number 707
of workspaces at Wmax = 5 to encourage modular but 708
compact program structure. Each iteration adds either 1 709
workspace with 2 CAD operations, or max 5 new opera- 710
tions but without new workspace created. This ensures the 711
program length grows gradually across iterations while re- 712
maining syntactically valid and executable. 713

6.5. Program Shortening 714

We shorten CadQuery programs by removing all top-level 715
boolean calls union, cut, and intersect from the ex- 716
pression, and leave the remainder intact. The procedure is 717
a single left-to-right pass over the expression that tracks (i) 718

1

CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 6. We show the pipeline of CAD-Recode, image from the orginal work.

the current parenthesis depth and (ii) whether the cursor is719
inside a quoted string (with escape handling). Whenever the720
cursor is not inside a string and the depth is zero, we test721
for one of the boolean operator prefixes; upon a match, we722
parse and skip the entire balanced-call payload (its match-723
ing closing parenthesis), correctly handling nested paren-724
theses and quoted substrings. After collecting all matched725
call intervals, we rebuild the expression by dropping those726
ranges and keeping everything else unchanged. This ap-727
proach guarantees that only top-level boolean edits are re-728
moved while nested calls and string literals are preserved.729

2

	Introduction
	Related Works
	Self Training
	Learning to Recover CAD Programs

	Method
	Program Sampling
	Program Length Diversification
	Training Data Pairs

	Implementation
	CAD-Recode
	Computational Cost

	Results and Evaluations
	Chamfer Distance Across Iterations
	IoU Across Iterations
	Program Length Distance Across Iterations
	Experiments with Different Pseudo Label Pairs
	Baseline 1: (best sample, its execution) pair
	Baseline 2: (best sample, input shape) pair
	Baseline 3: In Batch Sampling

	Conclusion
	CAD-Recode
	Program Sampling
	LoRA Fine-Tuning
	Program Expansion
	Program Shortening

