

PLLM: Pseudo-Labeling Large Language Models for CAD Program Synthesis

Anonymous CVPR submission

Paper ID *****

Abstract

001 *Recovering Computer-Aided Design (CAD) programs from*
 002 *3D geometries is a widely studied problem. With the re-*
 003 *cent advancements in large language models (LLMs), sev-*
 004 *eral works have explored leveraging their strong symbolic*
 005 *reasoning capabilities for CAD program synthesis. How-*
 006 *ever, existing methods that train LLMs to generate CAD*
 007 *programs rely on supervised learning, whereas ground-*
 008 *truth CAD program datasets are often unavailable in prac-*
 009 *tice. We introduce PLLM : Pseudo-Labeling Large Lan-*
 010 *guage Models for CAD Program Synthesis, an unsupervised*
 011 *self-training framework that fine-tunes LLMs for CAD pro-*
 012 *gram generation without requiring paired supervision. Our*
 013 *method takes as input a pre-trained LLM capable of gen-*
 014 *erating CAD programs and a 3D shape dataset. The model*
 015 *iteratively refines the pre-trained LLM’s performance on the*
 016 *new dataset, achieving improved program synthesis quality*
 017 *without access to ground-truth CAD programs.*

1. Introduction

018 Computer-Aided Design (CAD) is the industry standard for
 019 3D modeling in engineering and manufacturing. Designers
 020 typically construct models through a sequence of para-
 021 metric operations, which, when executed, produce bound-
 022 ary representations (B-reps) of 3D geometry. The inverse
 023 problem of recovering a CAD program from a given shape
 024 is also extensively studied. Recovering the program enables
 025 semantic editing, programmatic modification, and compact
 026 representation of 3D models.

027 Previous approaches address this inverse problem by
 028 training lightweight neural networks to predict CAD op-
 029 erations and their corresponding parameters [1, 5, 11, 52, 55].
 030 More recently, large language models (LLMs) have been
 031 explored for this reverse-engineering task due to their strong
 032 symbolic reasoning abilities and rapid progress in program
 033 synthesis [27, 30, 34, 43, 44]. However, existing methods
 034 all rely on supervised learning that requires ground-truth
 035 CAD programs. This reliance introduces two major chal-
 036 lenges: (1) when applying a model trained on one dataset
 037

038 to another without ground-truth programs, fine-tuning be-
 039 comes difficult due to the absence of supervision; and (2)
 040 the existence of multiple CAD programming languages
 041 makes it challenging for a model trained on one grammar
 042 to generalize to another.

043 In this work, we introduce a new framework to address
 044 this problem. Formally, our system takes as input a pre-
 045 trained LLM $p(z|x, \mathcal{L})$ that generates a CAD program z
 046 in language \mathcal{L} from a shape x , where x is sampled from
 047 a distribution \mathcal{S} . Given another distribution of shapes \mathcal{S}^* ,
 048 our goal is to fine-tune the pre-trained model to adapt it
 049 to the new domain. The main challenge is that the model
 050 may perform poorly on \mathcal{S}^* because it is not well adapted to
 051 this distribution. Moreover, \mathcal{S}^* may lack ground-truth CAD
 052 programs or include programs not expressed in \mathcal{L} , making
 053 direct supervised fine-tuning infeasible.

054 Our key observation is that the pre-trained LLM inher-
 055 ently possesses the ability to generate programs for shapes
 056 from the new domain in its original language \mathcal{L} . However,
 057 the generated results may be suboptimal. To address this,
 058 our method samples programs from the pre-trained model,
 059 executes them, and compares the outputs with the target
 060 inputs. This process enables the model to learn from its
 061 best-performing results, where the best programs serve as
 062 pseudo-labels that progressively improve the model through
 063 iterative self-training. Specifically, we use CAD-Recode
 064 [34], which is trained on the DeepCAD dataset [49] and
 065 outputs programs in the CadQuery language, as our pre-
 066 trained LLM. We then fine-tune it on the ABC dataset [25],
 067 a widely used benchmark that does not include ground-truth
 068 CAD programs.

069 In summary, we propose a novel method to fine-tune ex-
 070 isting LLMs for improved CAD program synthesis for new
 071 domain in the absence of ground-truth supervision. Our key
 072 contributions are as follows:

- 073 • We introduce PLLM, a self-training framework that fine-
 074 tunes pre-trained LLMs on unlabeled 3D datasets by
 075 jointly leveraging search and distillation to discover high-
 076 quality pseudo programs.
- 077 • We develop a method to sample output programs from
 078 LLMs and apply programmatic edits to generate diverse

079 variations, enriching supervision and improving model
080 robustness across training iterations.
081 • We validate our method by fine-tuning CAD-Recode
082 (pre-trained on DeepCAD) on the ABC dataset—showing
083 improvements in geometric fidelity.

084 2. Related Works

085 2.1. Self Training

086 Our work primarily belongs to the broader category of un-
087 supervised and weakly-supervised learning [7, 46]. For
088 these families of tasks, many approaches resort to general-
089 purpose policy gradient reinforcement learning [32, 38, 39,
090 46, 57]. However, as CAD programs are generally not dif-
091 ferentiable, reinforcement learning methods are not appli-
092 cable. Instead, we adopt a self-training approach, which
093 has been widely used to improve model performance in
094 weakly-supervised settings [31, 35, 53]. Recent advances
095 further show that self-training and data-augmentation-based
096 methods can enhance neural models across various do-
097 mains [18, 22, 58].

098 In the domain of visual program synthesis, self-training
099 has emerged as an effective strategy for learning in the ab-
100 sence of ground-truth program supervision [15, 19, 20]. Our
101 program synthesis method can be seen as execution-guided
102 [8, 12–14], where the training process is guided by the pre-
103 dicted programs’ execution results rather than explicit su-
104 pervision. Notably, PLAD [21] introduces a bootstrapped
105 learning framework that leverages a pre-trained program
106 generator to produce candidate programs for unseen shapes,
107 which are then used to iteratively fine-tune the model. Our
108 approach follows this paradigm, in which we treat our pre-
109 train LLM as the the model, and CAD program synthesis as
110 the task.

111 2.2. Learning to Recover CAD Programs

112 Our work also relates to the larger goal of reverse CAD
113 engineering from diverse input modalities, such as voxel
114 grids [26, 36, 40], point clouds [10, 17, 28, 28, 37, 41, 48,
115 49], and boundary representations [52]. Early approaches
116 relied on heuristic algorithms or lightweight neural net-
117 works, whereas recent works have begun to explore large
118 language models for this task [2–4, 16, 29, 33, 45, 50, 54,
119 56] given their strong symbolic reasoning abilities. Our
120 method falls within this family of approaches.

121 However, existing methods [23, 24, 27, 34, 43, 51]
122 rely on datasets containing paired ground-truth CAD pro-
123 grams and shapes. In practice, however, high-quality CAD
124 datasets such as [6, 25, 42, 47] are limited, and many
125 of them lack ground-truth programs. We adopt CAD-
126 Recode [34] as the pre-trained LLM for our method, and
127 fine-tunes on it.

128 3. Method

In this section, we formally describe the PLLM framework,
129 which takes input of the following components:

- **(1) Pre-trained LLM:** A model $p(z|x, \mathcal{L})$ capable of
131 generating CAD programs z from input shapes x using
132 the language \mathcal{L} , where x is drawn from a source distribu-
133 tion \mathcal{S} .
- **(2) Training dataset:** A new dataset of shapes \mathcal{S}^* , repre-
135 senting a target distribution that differs from \mathcal{S} .
- **(3) Black-box executor:** An executor \mathcal{E} that can execute
137 generated programs z to produce corresponding 3D geo-
138 metries.

The objective of the PLLM framework is to fine-tune the
140 pre-trained model on the new distribution \mathcal{S}^* to obtain an
141 updated model p' . For an input shape $x^* \in \mathcal{S}^*$, the execu-
142 tion $\mathcal{E}(z^*)$, where $z^* \sim p'(z|x^*, \mathcal{L})$, should yield a shape
143 that achieves a higher reward (in our system, a lower Cham-
144 fer Distance) when compared to the execution of the origi-
145 nal model’s output on the same input x^* .

We illustrate the overall PLLM procedure in Figure 1
146 To fine-tune $p(z|x, \mathcal{L})$ toward the target distribution \mathcal{S}^* ,
147 PLLM iteratively performs four key steps. First, the pre-
148 trained model $p(z|x, \mathcal{L})$ is used to sample multiple candi-
149 date programs for each input shape $x^* \in \mathcal{S}^*$ (section 3.1).
150 Second, for each input shape, the best sampled program is
151 identified based on the Chamfer Distance between its exe-
152 cution $\mathcal{E}(z)$ and the target shape x^* (section 3.1). Third,
153 programmatic edits are applied to the selected programs to
154 generate additional variants, enabling the model to observe
155 a broader range of valid programs (section 3.2). Finally,
156 the LLM is fine-tuned on these edited programs and their
157 corresponding executions (section 3.3).

Through successive iterations, these steps bootstrap
160 one another, forming a virtuous cycle: improvements in
161 $p(z|x, \mathcal{L})$ lead to higher-quality (X, Z) pairs that better re-
162 flect the target distribution \mathcal{S}^* , and training on these im-
163 proved pairs further refines the model toward \mathcal{S}^* .

165 3.1. Program Sampling

Given an input shape x^* , the pre-trained LLM $p(z|x^*, \mathcal{L})$
166 generates a set of $k = 10$ candidate programs $\{z_i\}_{i=1}^k$
167 through stochastic sampling (detailed in Appendix 6.2).
168 Since the generation process is non-deterministic, multi-
169 ple samples encourage exploration of diverse program can-
170 didates, allowing the selection of the best among them.
171 Across iterations, this diversity enables the model to refine
172 its output distribution toward higher-quality and more accu-
173 rate programs. This process is analogous to self-distillation,
174 where the model iteratively learns from its own best gener-
175 ations.

To select the best program, we compute the Chamfer
177 Distance between each execution $\mathcal{E}(z_i)$ and the target shape
178

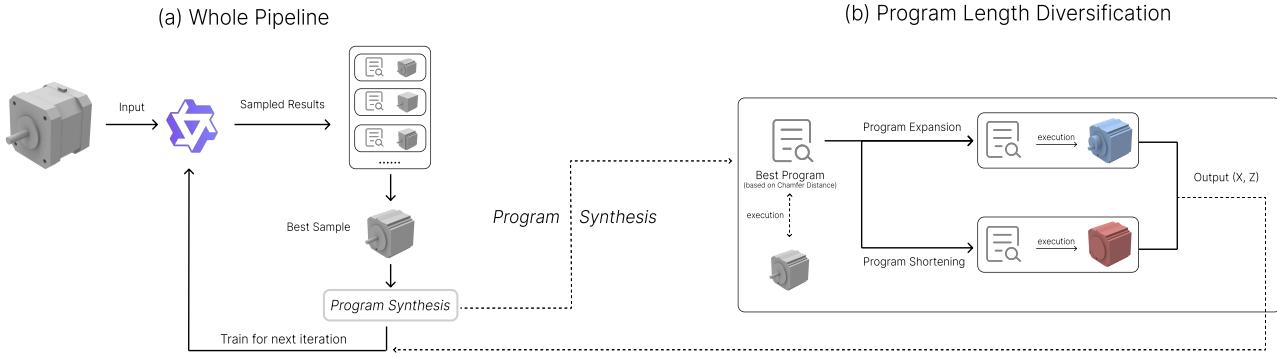


Figure 1. We show the overall pipeline in (a). At each iteration, the model first takes an input shape and samples multiple candidate programs. The selection algorithm then identifies the best program–shape pairs, which are used for training in the next iteration. (b) illustrates the details of the program length diversification process, where we perform both program expansion and shortening to create additional variants. The edited programs serve as labels Z , and their corresponding executions are treated as inputs X to form the new training dataset.

179 x^* , choosing the candidate with the lowest value as the optimal program z^* . If multiple candidates yield nearly identical reconstructions (diff Chamfer Distance $< 1 \times 10^{-4}$),
180 preference is given to shorter programs to promote concise
181 and efficient geometric representations.
182
183

3.2. Program Length Diversification

185 The pre-trained model may not capture the range of programs required by the new distribution \mathcal{S}^* , limiting its ability to represent shapes of varying complexity (see detailed
186 discussion in Section 5.3). To address this, we synthetically
187 expand (algorithm detailed in Appendix 6.4) or shorten (al-
188 gorithm detailed in Appendix 6.5) the selected programs
189 to create more variety. This broader length distribution
190 enables the model to generalize across different structural
191 complexities and thus adapt to inputs with a larger com-
192 plexity variance. This process is shown in Figure 1(b).
193
194

3.3. Training Data Pairs

196 We perform LoRA fine-tuning on the LLM using both the
197 extended and shortened programs as Z , paired with their
198 corresponding executions as X (additional training details
199 are provided in Appendix 6.3). A key advantage of this
200 design is that in each (X, Z) pair, the shape X is the ex-
201 act execution result of program Z , ensuring consistent su-
202 pervision during fine-tuning. Moreover, incorporating both
203 extended and shortened programs introduces greater varia-
204 tion in program lengths, which enhances the model’s ca-
205 pacity to generalize across different levels of program com-
206 plexity. This strategy maintains training stability while en-
207 riching the model’s capacity to produce a wider variety of
208 program lengths through iterative updates. We present addi-
209 tional experiments using alternative data pair configurations
210 in Section 5.4.

4. Implementation

In our implementation, we use CAD-Recode [34] as the pre-trained model, which was trained on the DeepCAD dataset [49]. We use the ABC dataset [25] as the new domain \mathcal{S}^* , and CadQuery together with its interpreter [9] as the execution environment.

4.1. CAD-Recode

CAD-Recode [34] is originally trained on the DeepCAD dataset [49], containing only sketch–extrude CAD programs (see Appendix 6.1 architecture for details). However, the ABC dataset [25] requires more types of operations than that. So our goal is to approximate the shapes in ABC-dataset using only sketch–extrude operations instead of reconstruct the exact same shapes.

Another limitation of CAD-Recode is that it caps its output program length at 768 tokens, which is insufficient for capturing the fine geometric details of many shapes in the ABC dataset. We extend the maximum program length to 1200 tokens and apply our program diversification strategy to expose the model to longer samples during training, enabling it to gradually generate more detailed and complex programs.

4.2. Computational Cost

We use the first 15 batches from the ABC dataset, sampling 5,000 shapes from each batch, for total 75,000 shapes. However, CAD-Recode is able to produce executable programs for only 71,784 shapes, all experiments are conducted on this subset.

We use a system with four NVIDIA L40S GPUs (each with 48 GB of memory) and an AMD EPYC 7R13 CPU (24 cores, 48 threads, 2.45 GHz). Running 6 self-training

211
212
213
214
215
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

233
234
235
236
237
238
239
240
241

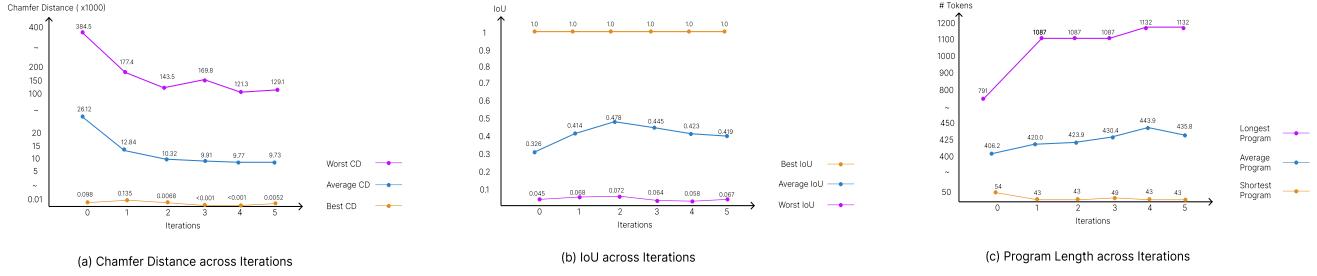


Figure 2. We compare quantitative results across iterations: (a) Chamfer Distance, (b) IoU, and (c) Program Length.

iterations takes 150 hours in total (around 25 hours per iteration). In each iteration, about 12 hours are spent on sampling programs from the dataset, 10 hours on program selection (execution, Chamfer distance computation, and length diversification), and 2 hours fine-tuning the language model for four epochs.

This behavior arises because IoU is not explicitly used as a reward signal—thus, as the model focuses more on lowering CD, it may overfit surface alignment without necessarily improving volumetric consistency.

5. Results and Evaluations

We take shapes from the ABC dataset as input and sample point clouds from them. These point clouds are then processed through our PLLM pipeline to generate outputs. We present qualitative results by comparing our outputs with those produced by CAD-Recode (Figure 4), as well as results across different training iterations (Figure 5). We also provide quantitative evaluations of Chamfer Distance, Intersection over Union (IoU), and program length in Figure 2 and Sections 5.1, 5.2, and 5.3.

5.3. Program Length Distance Across Iterations

We analyze how average, longest, and shortest program lengths evolve across iterations in Figure 2(c). Initially, average length increases, allowing finer shape generation. The baseline model, CAD-Recode, is limited to 768 tokens. When this cap is raised to 1200 tokens at iteration 0, program length grows slightly. From iteration 2 onward, as longer programs are added through expansion (see Section 3.2), the maximum length rises markedly, improving the model’s capacity to represent detailed geometries.

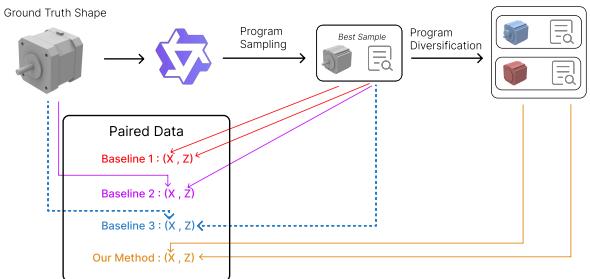


Figure 3. Overview of different baseline strategies compared in our study. The figure illustrates how each baseline constructs its (X, Z) training pairs. Baseline 1 uses the generated program and its execution; Baseline 2 uses the input shape and its best generated program; and Baseline 3 samples within each batch, selecting only the top 20% of high-performing pairs. Our proposed method further introduces program expansion and shortening to generate paired data (X, Z) that better align with the target distribution.

5.1. Chamfer Distance Across Iterations

We report the best, average, and worst Chamfer Distances across iterations in Figure 2(a). Each distance is computed after normalizing the predicted and input shapes to a unit bounding box (1^3) and scaling by 10^3 . The best and worst scores correspond to the mean of the top 10 and bottom 10 shapes per iteration, respectively, while the average reflects the mean over all shapes. The Chamfer Distance generally decreases over the first four iterations, after which improvements plateau or slightly regress, likely due to the limited CAD operations supported by our base model, CAD-Recode (see Section 4.1).

5.2. IoU Across Iterations

Another interesting metric to consider is the IoU across iterations (Figure 2(b)), which is not directly optimized in our framework. We do not intentionally select programs with high IoU, as our objective focuses on minimizing the Chamfer Distance (CD). While IoU measures volumetric overlap, CD evaluates surface alignment between the generated and target shapes. In our results, we observe that IoU increases during the first two iterations but decreases in later ones.

5.4. Experiments with Different Pseudo Label Pairs

To iteratively fine-tune the model for improved performance, we require our paired dataset to satisfy four key criteria:

1. The program represents the top-performing outputs,

Table 1. Comparison of different pseudo-label and program pairing strategies evaluated at the final iteration. Our proposed method, which uses paired synthetic programs and their executions for training, achieves the lowest Chamfer Distance and demonstrates the most consistent performance improvement across iterations.

Sampling Method	Final Average CD
Our Method	9.73
CAD-Recode	26.12
Baseline 1 (best sample, its execution)	28.24
Baseline 2 (best sample, input shape)	10.28
Baseline 3 (In Batch Sampling)	22.84

298 ensuring that the model shifts its distribution toward
 299 higher-quality generations.

300 2. The program Z , which serves as the label, can be ex-
 301 ecuted to produce the shape X , providing unambiguous
 302 supervision.
 303 3. The shape X distribution is close to the target distribu-
 304 tion
 305 4. The dataset introduces additional programmatic infor-
 306 mation that enhances the model’s reasoning and genera-
 307 tive ability.

308 Criterion (1) is automatically satisfied by the sampling
 309 stage (Section 3.1), which consistently selects the best pro-
 310 gram among all generated samples. Our method introduced
 311 in Section 3.2, which expands and shortens programs and
 312 uses the resulting diversified programs together with their
 313 executions for training, automatically satisfies criteria (2)
 314 and (4), while criterion (3) is only partially addressed.

315 In practice, it is impossible to satisfy all four cri-
 316 teria simultaneously; only paired ground-truth programs and
 317 shapes can fully meet them. For pseudo-labeling methods,
 318 certain trade-offs are inevitable. In this subsection, we dis-
 319 cuss alternative approaches (Figure 3) that fulfill different
 320 subsets of these criteria. The results of these methods, eval-
 321 uated at the final iteration, are presented in Table 1, where
 322 our proposed method achieves the best overall performance.

323 5.4.1. Baseline 1: (best sample, its execution) pair

324 The first baseline method (red line in Figure 3) trains the
 325 model using pairs of generated programs as Z and their
 326 corresponding executions as X . However, this approach
 327 actually degrades performance, as the model repeatedly ob-
 328 serves shapes that lie outside the target distribution paired
 329 with their generated programs, preventing it from making
 330 meaningful improvements.

331 5.4.2. Baseline 2: (best sample, input shape) pair

332 The second baseline method (purple line in Figure 3) trains
 333 the model using pairs of generated programs as Z and the
 334 corresponding input shapes as X . In essence, this approach

335 performs a self-guided search within the model, allowing it
 336 to train on its own best-available results at each iteration.
 337 This method achieves noticeable improvements; however,
 338 it compromises criterion (2), since the input shape and the
 339 program are not perfectly matched.

340 5.4.3. Baseline 3: In Batch Sampling

341 The final baseline method extends from Baseline 2 by per-
 342 forming sampling within each batch (blue dashed line in
 343 Figure 3). Instead of using all data for the next iteration, we
 344 select only the top 20% of samples based on performance.
 345 Thus, while the next iteration is still trained using *(best sam-
 346 ple, input shape)* pairs, lower-quality samples are excluded,
 347 representing an improvement over the previous baseline.

348 However, in our experiments, we observed that this ap-
 349 proach primarily enhances the model’s performance on the
 350 best shapes. As the top-performing samples continue to im-
 351 prove across iterations, the remaining 80% of shapes re-
 352 ceive no updates, resulting in little to no improvement for
 353 the lower-quality cases.

354 6. Conclusion

355 We presented PLLM, a self-training framework for un-
 356 supervised fine-tuning of large language models in CAD
 357 program synthesis. By iteratively generating, select-
 358 ing, and refining pseudo-labeled CAD programs, PLLM
 359 enables model improvement without requiring paired
 360 shape–program datasets. Our approach combines knowl-
 361 edge distillation and search-based pseudo-labeling to bridge
 362 the gap between pre-trained CAD models and unlabeled
 363 shape data. Empirical evaluations show that PLLM out-
 364 performs the baseline CAD-Recode model in both geom-
 365 etric reconstruction quality and program diversity, achieving
 366 lower Chamfer Distances across iterations while maintain-
 367 ing valid and interpretable CAD code.

368 A major drawback of the pseudo-labeling approach is its
 369 computational cost. The process involves multiple itera-
 370 tions, each consisting of sampling, selection, and training
 371 stages. In each iteration, beyond model training, the pro-
 372 gram sampling and selection steps also require non-trivial
 373 time. This overhead reflects the inherent cost of operating
 374 without ground-truth programs.



Figure 4. Comparison between our results and those produced by CAD-Recode, which correspond to the outputs from the first iteration of our framework

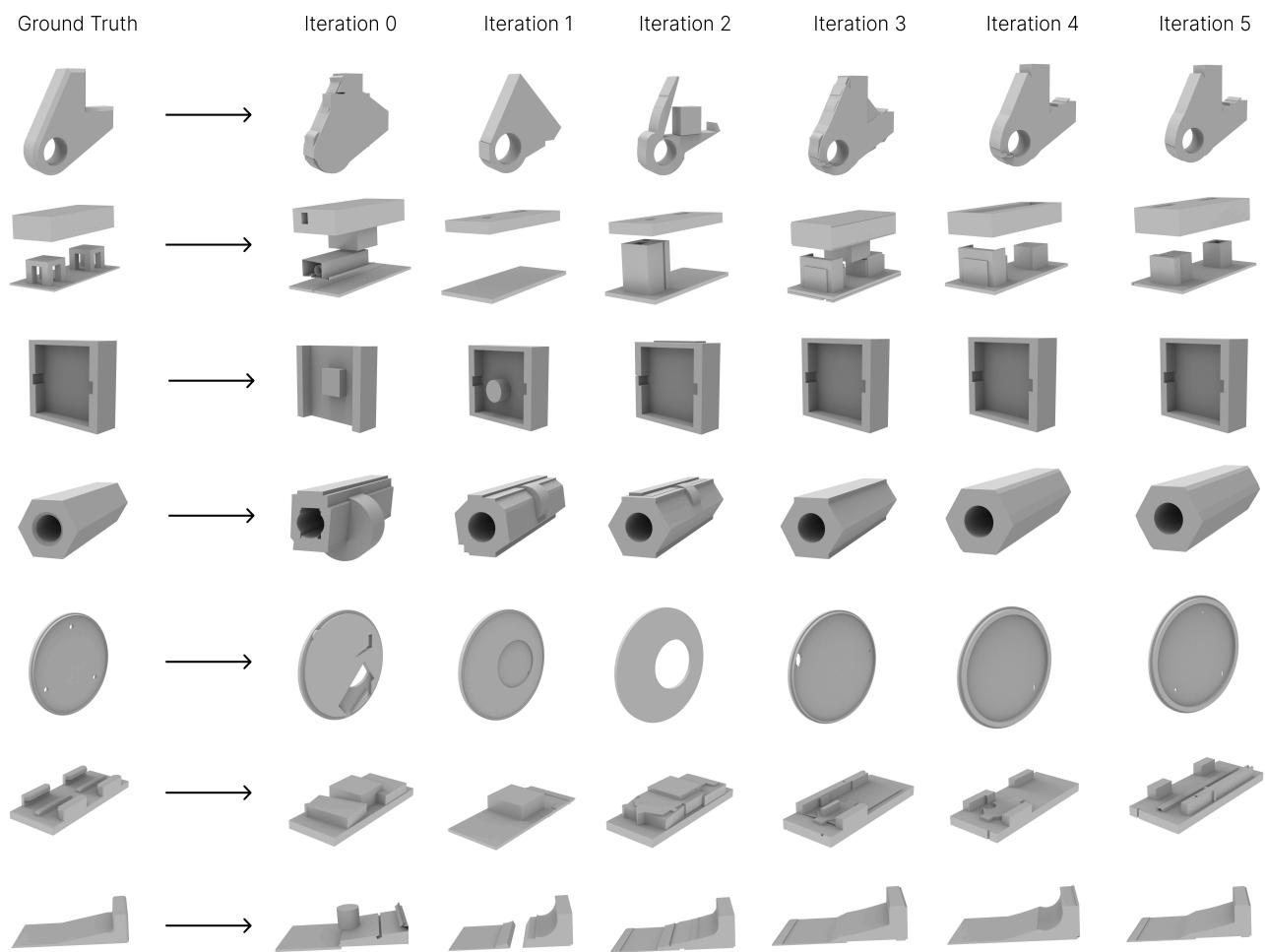


Figure 5. Results across different iterations, showing that the generated shapes gradually improve in quality as training progresses

375

References

[1] Sk Aziz Ali, Mohammad Sadil Khan, and Didier Stricker. Brep boundary and junction detection for cad reverse engineering. In *IEEE International Conference on Computing and Machine Intelligence (ICMI)*, 2024. 1

[2] Kamel Alrashedy, Pradyumna Tambwekar, Zulfiqar Zaidi, Megan Langwasser, Wei Xu, and Matthew C. Gombolay. Generating cad code with vision-language models for 3d designs. *arXiv preprint arXiv:2410.05340*, 2024. arXiv:2410.05340. 2

[3] Kamel Alrashedy, Pradyumna Tambwekar, Zulfiqar Zaidi, Megan Langwasser, Wei Xu, and Matthew C. Gombolay. Generating cad code with vision-language models for 3d designs. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2025. Preprint available via IEEE Xplore (Document 10890248).

[4] Akshay Badagabettu, Sai Sravan Yarlagadda, and Amir Barati Farimani. Query2cad: Generating cad models using natural language queries. *CoRR*, abs/2406.00144, 2024. 2

[5] Pal Benko and J et al. Faigl. Algorithms for reverse engineering boundary representation (b-rep) solid models. Technical report, Berkeley EECS / UC Berkeley, 2001. 1

[6] Pratyush Bharadwaj, Paul Willberg, Faizan Ahmad, Adeel Ahmad, et al. Simjeb: Simulated joint engineering benchmark. <https://simjeb.github.io>, 2023. Accessed: 2025-07-12. 2

[7] Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging grammar and reinforcement learning for neural program synthesis. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2018. 2

[8] Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2019. 2

[9] CadQuery developers. Cadquery — a python parametric cad scripting framework. 3

[10] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and Wojciech Matusik. Inversecsg: Automatic conversion of 3d models to csg trees. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 37(6), 2018. 2

[11] Elona Dupont, Kseniya Cherenkova, Anis Kacem, Sk Aziz Ali, Ilya Arzhannikov, Gleb Gusev, and Djamil Aouada. Cadops-net: Jointly learning cad operation types and steps from boundary-representations. In *arXiv preprint arXiv:2208.10555*, 2022. 1

[12] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer graphics programs from hand-drawn images. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018. 2

[13] Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama. Write, execute, assess: Program synthesis with a repl. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2019.

[14] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales, Luke Hewitt, Armando Solar-Lezama, and Joshua B. Tenenbaum. Dreamcoder: Growing generalizable, interpretable knowledge with wake-sleep bayesian program learning. *arXiv preprint arXiv:2006.08381*, 2020. 2

[15] Aditya Ganeshan, R. Kenny Jones, and Daniel Ritchie. Improving unsupervised visual program inference with code rewriting families. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 2023. 2

[16] Yandong Guan, Xilin Wang, Xingxi Ming, Jing Zhang, Dong Xu, and Qian Yu. Cad-coder: Text-to-cad generation with chain-of-thought and geometric reward. *arXiv preprint arXiv:2505.19713*, 2025. arXiv:2505.19713. 2

[17] Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong, and Baining Guo. Complexgen: Cad reconstruction by b-rep chain complex generation. *ACM Transactions on Graphics (SIGGRAPH)*, 41(4), 2022. 2

[18] Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. Revisiting self-training for neural sequence generation. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2020. 2

[19] Robert Jones, Daniel Ritchie, and Armando Solar-Lezama. Shapecoder: Discovering abstractions for visual programs from unstructured primitives. *ACM Transactions on Graphics (TOG)*, 42(4):1–13, 2023. 2

[20] Robert Jones, Shoubhik Bhat, Daniel Ritchie, and Armando Solar-Lezama. Learning to edit visual programs with self-supervision. *arXiv preprint arXiv:2406.02383*, 2024. 2

[21] R. Kenny Jones, Homer Walke, and Daniel Ritchie. Plad: Learning to infer shape programs with pseudo-labels and approximate distributions. *CVPR*, 2022. Revised version v4, 22 Mar 2022. 2

[22] Jacob Kahn, Ann Lee, and Awni Hannun. Self-training for end-to-end speech recognition. In *ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 7084–7088. IEEE, 2020. 2

[23] Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and Djamil Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch instance guided attention. *CVPR*, 2024. 2

[24] Muhammad Tayyab Khan, Lequn Chen, Ye Han Ng, Wenhe Feng, Nicholas Yew Jin Tan, and Seung Ki Moon. Leveraging vision-language models for manufacturing feature recognition in cad designs. *arXiv preprint arXiv:2411.02810*, 2024. 2

[25] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model dataset for geometric deep learning. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2019. 1, 2, 3

[26] Joseph George Lambourne, Karl Willis, Pradeep Kumar Jayaraman, Longfei Zhang, Aditya Sanghi, and Kamal Rahimi Malekshan. Reconstructing editable prismatic cad from rounded voxel models. In *SIGGRAPH Asia Conference Papers*, 2022. 2

488 [27] Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, Guichun
489 Zhou, and Xiangdong Zhou. Cad-llama: Leveraging large
490 language models for computer-aided design parametric 3d
491 model generation. *arXiv preprint arXiv:2505.04481*, 2025.
492 1, 2

493 [28] Yujia Liu, Anton Obukhov, Jan Dirk Wegner, and Konrad
494 Schindler. Point2cad: Reverse engineering cad models from
495 3d point clouds. In *Proceedings of the IEEE/CVF Conference on
496 Computer Vision and Pattern Recognition (CVPR)*, pages
497 1540–1550, 2024. 2

498 [29] Liane Makatura, Michael Foshey, Bohan Wang, Felix
499 Hähnlein, Pingchuan Ma, Bolei Deng, Megan Tjandrasuwi-
500 ta, Andrew Spielberg, Crystal Elaine Owens, Peter Yichen
501 Chen, Allan Zhao, Amy Zhu, Wil J. Norton, Edward Gu,
502 Joshua Jacob, Yifei Li, Adriana Schulz, and Wojciech
503 Matusik. How can large language models help
504 humans in design and manufacturing? *arXiv preprint
505 arXiv:2307.14377*, 2023. arXiv:2307.14377. 2

506 [30] Dimitrios Mallis, Ahmet Serdar Karadeniz, Sebastian
507 Cavada, Danila Rukhovich, Niki Foteinopoulou, Kseniya
508 Cherenkova, Anis Kacem, and Djamil Aouada. Cad-
509 assistant: Tool-augmented vllms as generic cad task solvers.
510 *ICCV*, 2025. arXiv:2412.13810. 1

511 [31] David McClosky, Eugene Charniak, and Mark Johnson. Ef-
512 fective self-training for parsing. In *Proceedings of the Hu-
513 man Language Technology Conference of the NAACL, Main
514 Conference*, pages 152–159, New York City, USA, 2006. As-
515 sociation for Computational Linguistics. 2

516 [32] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza,
517 Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,
518 and Koray Kavukcuoglu. Asynchronous methods for deep
519 reinforcement learning. In *International Conference on Ma-
520 chine Learning*, pages 1928–1937, 2016. 2

521 [33] Felix Ocker, Stefan Menzel, Ahmed Sadik, and Thiago
522 Rios. From idea to cad: A language model-driven multi-
523 agent system for collaborative design. *arXiv preprint
524 arXiv:2503.04417*, 2025. 2

525 [34] Danila Rukhovich, Elona Dupont, Dimitrios Mallis, Kseniya
526 Cherenkova, Anis Kacem, and Djamil Aouada. Cad-recode:
527 Reverse engineering cad code from point clouds. *ICCV*,
528 2025. 1, 2, 3

529 [35] H. Scudder. Probability of error of some adaptive pattern-
530 recognition machines. *IEEE Transactions on Information
531 Theory*, 11(3):363–371, 1965. 2

532 [36] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos
533 Kalogerakis, and Subhransu Maji. Csgnet: Neural shape
534 parser for constructive solid geometry. In *IEEE Conference
535 on Computer Vision and Pattern Recognition (CVPR)*, 2018.
536 2

537 [37] Gopal Sharma, Difan Liu, Evangelos Kalogerakis,
538 Subhransu Maji, Siddhartha Chaudhuri, and Radomír
539 Měch. Parsenet: A parametric surface fitting network for 3d
540 point clouds. In *Proc. European Conference on Computer
541 Vision (ECCV)*, 2020. 2

542 [38] David Silver, Guy Lever, Nicolas Heess, Thomas Degris,
543 Daan Wierstra, and Martin Riedmiller. Deterministic pol-
544 icy gradient algorithms. In *International Conference on Ma-
545 chine Learning*, pages 387–395, 2014. 2

546 [39] Richard S. Sutton, David A. McAllester, Satinder P. Singh,
547 and Yishay Mansour. Policy gradient methods for reinforce-
548 ment learning with function approximation. In *Advances in
549 Neural Information Processing Systems*, pages 1057–1063,
550 2000. 2

551 [40] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis,
552 William T. Freeman, Joshua B. Tenenbaum, and Jiajun Wu.
553 Learning to infer and execute 3d shape programs. *arXiv*,
554 2019. Presented at ICLR 2019. 2

555 [41] Mikaela Angelina Uy, Yen Yu Chang, Minhyuk Sung,
556 Purvi Goel, Joseph Lambourne, Tolga Birdal, and Leonidas
557 Guibas. Point2cyl: Reverse engineering 3d objects from
558 point clouds to extrusion cylinders. In *Conference on Com-
559 puter Vision and Pattern Recognition (CVPR)*, 2022. 2

560 [42] Aayush Vardhan, Rishabh Sahay, Abhishek Pandey, et al.
561 Mcm: A mechanical components dataset for geometric deep
562 learning. *arXiv preprint arXiv:2306.09053*, 2023. 2

563 [43] Ruiyu Wang, Yu Yuan, Shizhao Sun, and Jiang Bian. Text-
564 to-cad generation through infusing visual feedback in large
565 language models. *ICML*, 2025. 1, 2

566 [44] Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu,
567 Yanzhou Zhang, and Jie Yang. Cad-gpt: Synthesising cad
568 construction sequence with spatial reasoning-enhanced mul-
569 timodal llms. *arXiv preprint arXiv:2412.19663*, 2024. 1

570 [45] Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu,
571 Yanzhou Zhang, and Jie Yang. Cad-gpt: Synthesising cad
572 construction sequence with spatial reasoning-enhanced mul-
573 timodal llms. *AAAI*, 2025. Accepted at AAAI 2025 (Vol. 39,
574 No. 8, pp. 7880–7888). 2

575 [46] Ronald J. Williams. Simple statistical gradient-following al-
576 gorithms for connectionist reinforcement learning. *Machine
577 Learning*, 8:229–256, 1992. 2

578 [47] Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao
579 Du, Joseph G. Lambourne, Armando Solar-Lezama, and
580 Wojciech Matusik. Fusion 360 gallery: A dataset and en-
581 vironment for programmatic cad construction from human
582 design sequences. *ACM Transactions on Graphics (TOG)*,
583 40(4):1–21, 2021. 2

584 [48] Q. Wu, K. Xu, and J. Wang. Constructing 3d csg models
585 from 3d raw point clouds. *Computer Graphics Forum*, 37
586 (5), 2018. 2

587 [49] Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A
588 deep generative network for computer-aided design models.
589 *ICCV*, 2021. 1, 2, 3

590 [50] Sifan Wu, Amir Khasahmadi, Mor Katz, Pradeep Kumar Ja-
591 yaraman, Yewen Pu, Karl Willis, and Bang Liu. Cad-llm:
592 Large language model for cad generation. In *NeurIPS Work-
593 shop on Machine Learning for Creativity and Design*, 2023.
594 Workshop, NeurIPS 2023, New Orleans, LA. 2

595 [51] Jingwei Xu, Zibo Zhao, Chenyu Wang, Wen Liu,
596 Yi Ma, and Shenghua Gao. Cad-mllm: Unifying
597 multimodality-conditioned cad generation with mllm. *arXiv
598 preprint arXiv:2411.04954*, 2025. 2

599 [52] Xianghao Xu, Wenzhe Peng, Chin-Yi Cheng, Karl D. D.
600 Willis, and Daniel Ritchie. Inferring CAD mod-
601 eling sequences using zone graphs. *arXiv preprint
602 arXiv:2104.03900*, 2021. Submitted 30 Mar 2021; revised
603 20 Apr 2021. 1, 2

604 [53] David Yarowsky. Unsupervised word sense disambiguation
605 rivaling supervised methods. In *Proceedings of the 33rd An-*
606 *nual Meeting of the Association for Computational Linguis-*
607 *tics*, pages 189–196, Cambridge, Massachusetts, USA, 1995.
608 Association for Computational Linguistics. 2

609 [54] Licheng Zhang, Bach Le, Naveed Akhtar, Siew-Kei Lam,
610 and Tuan Ngo. Large language models for computer-aided
611 design: A survey. *arXiv preprint arXiv:2505.08137*, 2025.
612 arXiv:2505.08137. 2

613 [55] Shengdi Zhou, Tianyi Tang, and Bin Zhou. Cadparser: A
614 learning approach of sequence modeling for b-rep cad. In
615 *Proceedings of the Thirty-Second International Joint Con-*
616 *ference on Artificial Intelligence (IJCAI)*, 2023. 1

617 [56] Haotian Zhu, Guyue Zhang, Zekun Hao, Zipeng Gao,
618 Hengyang Zhao, Yifei Ren, Qingyang Wu, Xuan Luo, Jia-
619 hao Zhang, Masha Shugrina, and Xinchen Yan. Text2cad:
620 A large-scale benchmark for language-driven cad modeling.
621 *arXiv preprint arXiv:2409.17106*, 2024. 2

622 [57] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and
623 Anind K. Dey. Maximum entropy inverse reinforcement
624 learning. In *AAAI Conference on Artificial Intelligence*,
625 pages 1433–1438, 2008. 2

626 [58] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao
627 Liu, Ekin D. Cubuk, and Quoc V. Le. Rethinking pre-training
628 and self-training. *arXiv preprint arXiv:2006.06882*, 2020. 2

PLLM: Pseudo-Labeling Large Language Models for CAD Program Synthesis

Supplementary Material

629

6.1. CAD-Recode

630 CAD-Recode addresses the task of CAD reverse engineering by mapping a 3D input point cloud to executable CAD
631 code. The overall pipeline comprises two primary components:
632 (i) a point-cloud encoder (“point projector”) which
633 downsamples the input point cloud, applies positional
634 encoding and a shallow feed-forward network, and produces a
635 sequence of feature embeddings; and (ii) a language-model
636 decoder, which is a small-scale pretrained large-language
637 model (e.g., Qwen2-1.5B) adapted via a lightweight projec-
638 tion layer that accepts the point-cloud embeddings and gen-
639 erates CAD code (in Python, using the CadQuery library)
640 as output.

642 Training is done end-to-end on a large synthetic dataset
643 of over one million program–shape pairs: each pair com-
644 prises a point cloud sampled from executing a ground-truth
645 CAD script and the corresponding Python source code that
646 produced it. Teacher-forcing is used during training to
647 minimise token-level negative log-likelihood. At inference
648 time multiple candidate programs are decoded; among these
649 the one whose execution yields a point-cloud representa-
650 tion most closely matching the input (measured via Cham-
651 fer Distance) is selected as the final output. We show the
652 pipeline of CAD-Recode in Figure 6.

653 The CAD code is expressed in the CadQuery Python
654 scripting language, allowing interpretable, modular, and di-
655 rectly executable CAD representations rather than opaque
656 numeric vectors. The dataset is procedurally generated to
657 cover a broad variety of sketch-and-extrude operations, pro-
658 viding a scalable and controlled training supply.

659 6.2. Program Sampling

660 Given an input shape, we sample 10 *candidate programs*
661 from the LLM using stochastic decoding to encourage di-
662 versity while maintaining structural consistency. Specifi-
663 cally, we apply nucleus sampling with $\text{top_p} = 0.8$ and
664 $\text{top_k} = 30$, and set the temperature to 1.2 to introduce
665 moderate randomness in token generation. This setup en-
666 sures that sampled programs differ in operation order, pa-
667 rameterization, or minor geometric variations, yet remain
668 semantically close to the input shape. In other words, the
669 generated candidates are diverse but not divergent—they
670 explore multiple plausible reconstructions without deviat-
671 ing excessively from the shape’s geometry or intended de-
672 sign semantics.

673 6.3. LoRA Fine-Tuning

674 We fine-tune the pretrained *CAD-Recode* model using Low-
675 Rank Adaptation (LoRA) to specialize it for longer and
676 more complex program generation conditioned on 3D point
677 clouds. The original CAD-Recode architecture supports a
678 maximum token length of 768. To encourage the model to
679 produce longer and more expressive programs, we extend
680 this limit to 1200 tokens, effectively expanding the language
681 capacity of the decoder while maintaining the same point
682 cloud resolution.

683 Our fine-tuning strategy preserves the model’s ability
684 to output syntactically valid and executable CadQuery
685 code. To achieve this, we apply LoRA updates only to
686 the *middle transformer layers* (layers 4–8), which primar-
687 ily govern high-level reasoning and compositional planning,
688 while keeping the bottom layers (responsible for tokeniza-
689 tion, geometric grounding, and syntax formation) frozen.
690 This design allows the model to adapt its semantic under-
691 standing of CAD programs without disrupting the sta-
692 ble syntax-generation capability of the pretrained backbone.
693 The LoRA configuration uses rank $r = 8$, $\alpha = 32$, and
694 dropout $p = 0.1$, applied to both the self-attention and MLP
695 projections within the selected layers.

696 6.4. Program Expansion

697 In CadQuery, a *workspace* corresponds to a local coordi-
698 nate frame used for sketching and feature operations (e.g.,
699 `extrude`, `cut`, `union`). And each workspace encap-
700 sulates a self-contained sequence of modeling steps that con-
701 tribute to the final solid geometry.

702 The base CAD-Recode output typically instantiates one
703 or two workspaces. We iteratively expand the program
704 by either (i) spawning a new workspace (creating a new
705 Workplane with its own procedurally generated sketch and
706 feature operations), or (ii) appending additional opera-
707 tions to an existing workspace. We cap the total number
708 of workspaces at $W_{\max} = 5$ to encourage modular but
709 compact program structure. Each iteration adds either 1
710 workspace with 2 CAD operations, or max 5 new opera-
711 tions but without new workspace created. This ensures the
712 program length grows gradually across iterations while re-
713 maining syntactically valid and executable.

714 6.5. Program Shortening

715 We shorten CadQuery programs by removing all top-level
716 boolean calls `union`, `cut`, and `intersect` from the ex-
717 pression, and leave the remainder intact. The procedure is
718 a single left-to-right pass over the expression that tracks (i)

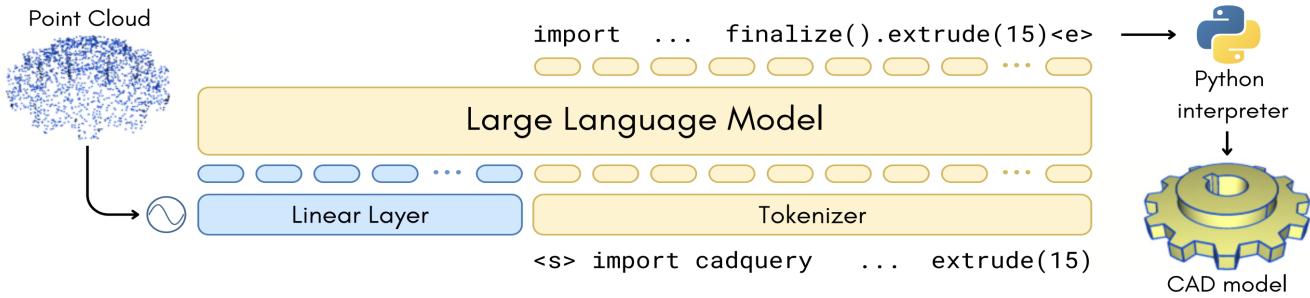


Figure 6. We show the pipeline of CAD-Recode, image from the orginal work.

719 the current parenthesis depth and (ii) whether the cursor is
720 inside a quoted string (with escape handling). Whenever the
721 cursor is not inside a string and the depth is zero, we test
722 for one of the boolean operator prefixes; upon a match, we
723 parse and skip the entire balanced-call payload (its match-
724 ing closing parenthesis), correctly handling nested paren-
725 theses and quoted substrings. After collecting all matched
726 call intervals, we rebuild the expression by dropping those
727 ranges and keeping everything else unchanged. This ap-
728 proach guarantees that only top-level boolean edits are re-
729 moved while nested calls and string literals are preserved.