

CADrawer : Autoregressive CAD Generation from 3D Sketches

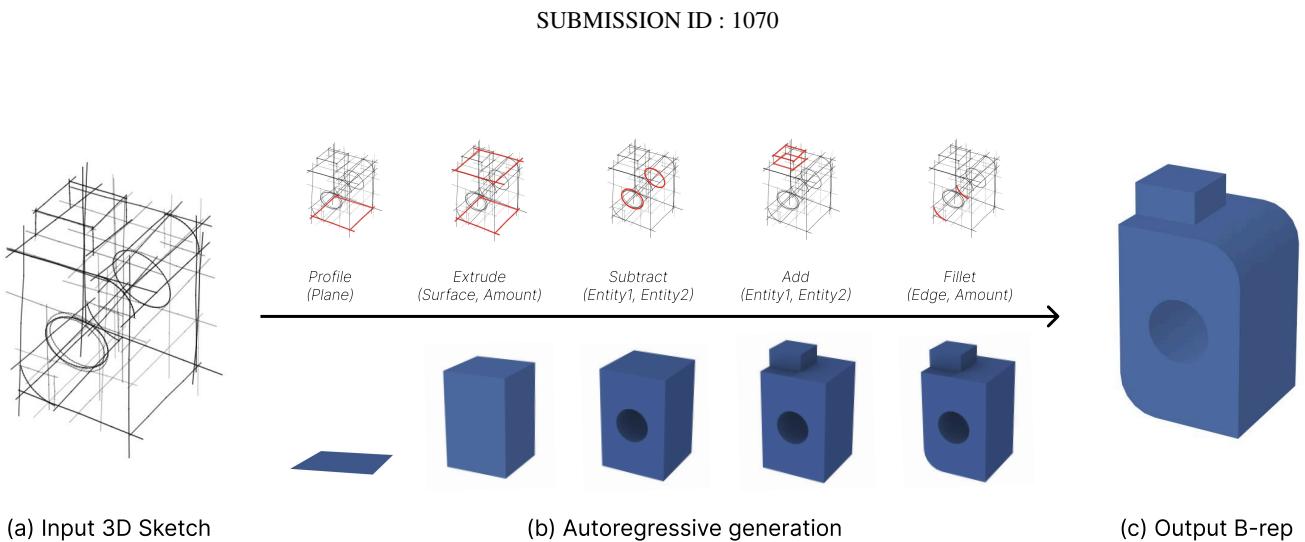


Figure 1: Our system takes as input a 3D sketch, and autoregressively generates a CAD program that produces the intended shape.

Abstract

In professional design workflows, designers often begin by creating sketch drawings before converting them into CAD programs. However, prior work on automatically interpreting these sketches has been limited to simplified inputs and fails to account for construction lines that are ubiquitous in real-world drawings. We present CADrawer, a system that translates 3D sketches into CAD programs using an autoregressive approach, leveraging construction lines as a rich source of information for recovering intermediate CAD operations. At each step, CADrawer predicts the next modeling operation and its parameters based on a graph-based representation of the sketch, which explicitly encodes spatial and temporal relationships between strokes. To improve generation quality, the system maintains multiple candidate programs in parallel, and a learned value function evaluates these partial programs to guide the search toward the most promising candidates. CADrawer is designed as a complement to 3D sketching interfaces, building on existing methods that create 3D sketches. We evaluate our method across several datasets, including those containing dense construction lines and cases without ground-truth B-rep shapes.

CCS Concepts

- Computing methodologies → Shape modeling;

1. Introduction

Computer-Aided Design (CAD) is a widely adopted standard for creating 3D shapes across various industries. CAD models are typically represented as programs consisting of a sequence of parametric modeling operations, such as extruding a 2D profile to create a solid block or rounding an edge to create a fillet. The parameters of these operations offer precise control on the dimensions of the geometry produced when executing the programs.

However, creating CAD models requires significant expertise in both planning the sequence of modeling operations and selecting them in feature-rich software interfaces. Meanwhile, sketching of-

fers a quick and flexible way for designers to visualize the 3D shapes they have in mind, and to plan how to construct these shapes in CAD modeling. Prior research [LPBM20, HLMB22] and design educators [Hen12, Sto08] point to strong similarities between the steps designers follow when sketching 3D shapes, and the operations they use to model in CAD software. In this paper, we present a method that exploits these similarities to translate industrial design sketches into CAD programs.

Prior works [LPBM22, LPBM20, SLX*25] have introduced systems that recognize CAD operations from sketches, but these methods are restricted to sketches containing only feature lines, where each stroke directly corresponds to an edge of the final geometry

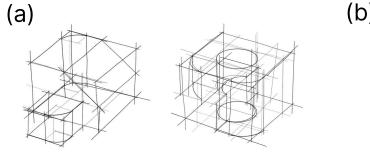
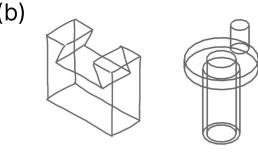


Figure 2: Examples of sketches that our system can process (a), compared to the examples of sketches handled by previous work [LPBM22, LPBM20, SLX* 25] (b)

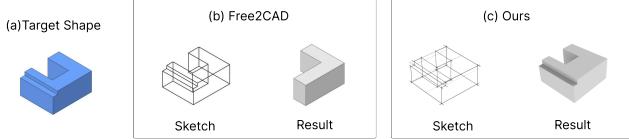


Figure 3: We illustrate a case where Free2CAD [LPBM22] fails to reconstruct the target shape (a) when relying solely on the feature lines shown in (b). Since the strokes corresponding to the subtraction operation are absent, the method cannot recover the correct modeling process. In contrast, sketching the same shape with construction lines provide additional information about intermediate structures (c), which our method exploits to successfully reconstruct the intended shape.

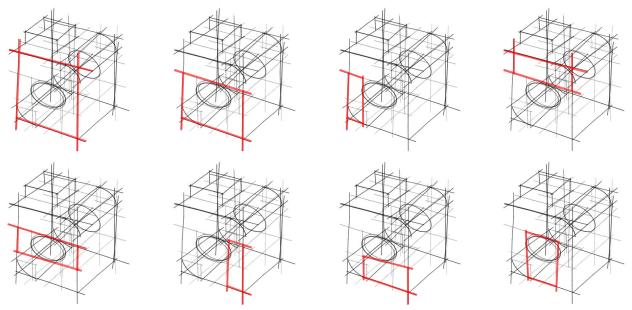


Figure 4: Construction lines can form multiple loops on the same surface, increasing ambiguity and complexity in sketch interpretation.

ture. In contrast to prior work that relies on Transformer-based models to discover stroke interactions [LPBM22], we explicitly encode geometric relationships in a graph where nodes represent sketch entities and edges encode spatial and temporal ordering between these entities. This custom representation allows us to adopt a lightweight graph neural network for analyzing the sketch and predicting the CAD operations. Furthermore, we augment the graph with information from the generated geometry, which provides both spatial and programmatic context.

We adopt an autoregressive approach that predicts a single operation and its corresponding parameters at each step. This sequential formulation allows the model to postpone uncertain decisions and use the progressively built shape to guide more informed and immediate predictions. However, like previous methods, this approach is prone to error accumulation. We maintain a set of candidate programs in parallel and apply Sequential Monte Carlo (SMC) to resample the best candidates. We use a learned value function that evaluates each partial program and concentrates computational resources on the most promising ones during the SMC process.

In summary, our system is the first to tackle the challenge of interpreting sketches that include both feature and construction lines. It takes as input 3D sketches and autoregressively generates CAD programs that can be executed to produce shapes aligned with the input. We evaluate our system on both synthetic and hand-drawn sketches spanning a range of complexities. We will release our code upon acceptance.

Our main contributions are:

- An autoregressive framework for translating 3D sketches into CAD programs.
- A graph-based representation of 3D sketches that captures geometric relationships between sketch entities.
- A learned value function that evaluates CAD programs by estimating their potential to reproduce the depicted shape.

2. Related Works

Our work builds on two complementary streams of research — sketch-based modeling and CAD program synthesis. We refer to recent surveys for extensive discussions of these two domains [LB25, RGJ*23].

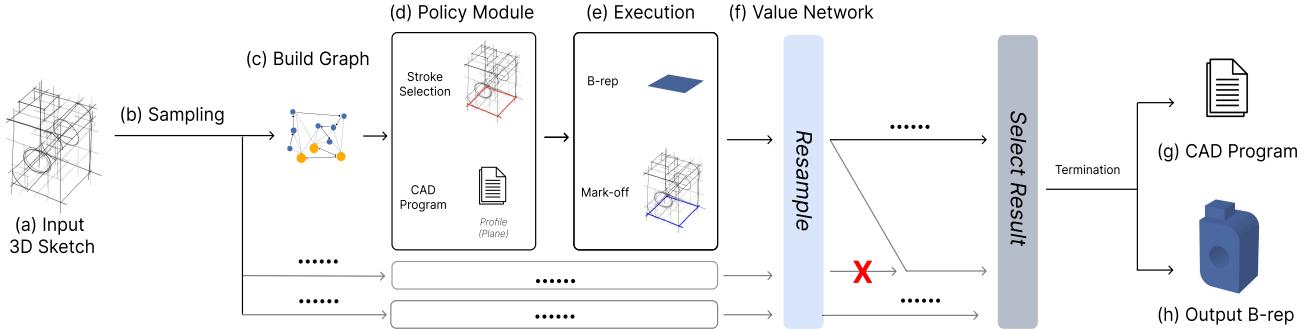


Figure 5: Our system takes as input (a) a 3D sketch and performs autoregressive generation to produce (g) a CAD program, and (h) the resulting B-rep shape by executing the program. We create multiple samples that run in parallel, which are resampled after each step to maintain diversity and guide the generation progress. At each autoregressive step, we first build a graph (c) representing the current state of the reconstruction (Section 4), and then the policy module (d) predicts a CAD operation and identifies the strokes used to derive its parameters (Section 5). The current program is then executed and compared with the input 3D sketch to mark off the strokes that are already represented in the current program (e). This feedback is used as input for the next step. After each step, the value function (f) estimates the likelihood of success for the current program state, allowing us to focus the search on more promising samples (Section 6).

94 **Sketch-based modeling.** The field of sketch-based modeling has 127
 95 matured to offer a broad range of interactive and automatic ap- 128
 96 proaches to create 3D shapes from 2D drawings. Optimization-
 97 based algorithms tackle this challenge by imposing geometric
 98 constraints between lines, such as parallelism and orthogonality
 99 [LS96], planarity [LCLT08, YLT13], symmetry [CSMS13, PCV16].
 100 While early methods were limited to polyhedral shapes and clean
 101 drawings, later algorithms have been extended to curved objects
 102 [XCS*14, SKSK09], and sketches with oversketching and con-
 103 struction lines [GHL*20, HGSB22]. Building on this body of work,
 104 we assume that our input is a 3D sketch created with these meth-
 105 ods. Taking 3D sketches as input facilitates the detection of sketch
 106 entities and their spatial relationships, allowing us to focus on rec-
 107 cognizing CAD operations from such entities.

108 We contribute to the family of works that recognize para- 141
 109 metric shapes from sketches [HKYM16, NGDGA*16, LPBM20, 142
 110 LPBM22, PMKB23, SLX*25]. In particular, our method is clos- 143
 111 est to Free2CAD [LPBM22] that autoregressively identifies groups 144
 112 of strokes that depict CAD operations and derive their parameters. 145
 113 However, both works are limited to simple, clean contour draw- 146
 114 ings that only contain feature lines that appear in the final shape. In 147
 115 contrast, the design sketches we target contain construction lines, 148
 116 which provide additional information about intermediate CAD op- 149
 117 erations, but also make the identification process more challenging. 150

118 **Learning to Recover CAD Programs** Our work also relates to 152
 119 the more general goal of reverse engineering CAD models from di- 153
 120 verse input, such as voxel grids [SGL*18, TLS*19, LWJ*22], point 154
 121 clouds [WXW18, DIP*18, WXXZ21, LOWS23, GLP*22, SLK*20, 155
 122 RDM*24], boundary representations [XPC*21] or others [CF25, 156
 123 WZW*24]. Working on sketches gives us a unique advantage, as 157
 124 the drawing sequence we take as input not only depicts the final 158
 125 shape envisioned by the designer, it also describes how the de- 159
 signer plans to construct it. This additional information helps recov-

ering the ordering of CAD operations, as observed by prior work on sketch-based modeling [LPBM20, LPBM22].

129 Inspired by prior work on deep learning for CAD, we propose to 130 represent 3D sketches with a graph structure that encodes stroke 131 ordering, stroke intersections, and stroke loops. This choice aligns 132 with the inherent nature of CAD boundary representations (B-reps), 133 where graphs naturally capture the relationships between faces, 134 edges, and vertices. Many previous works have proposed their own 135 graph representations tailored to the specific needs of their tasks 136 [XPC*21, CRN*22, WJC*22, JHC*21, JNK*23]. Our representa- 137 tion jointly encodes the 3D sketch and the B-rep generated by ex- 138 ecuting the CAD program, which enables effective mapping be- 139 140 between our input and output while providing spatial context for pro-
 gram generation.

141 Our approach also builds on ideas from previous works in pro- 142 gram synthesis [ENP*19, ERSLT18, CLS19, TLS*19, KMP*18] 143 that incorporate execution-based feedback into autoregressive gen- 144 eration. Specifically, we adopt an autoregressive approach to cap- 145 ture the sequential nature of CAD programs, where later operations 146 often depend on geometry generated in earlier steps. We extend this 147 paradigm by executing the partial program at each step, comparing 148 the resulting B-rep with the input 3D sketch, and using spatial feed- 149 back to guide the next prediction. This execution-feedback loop 150 enables the system to remain aware of construction progress and 151 avoid redundant operations.

3. Approach

152 Our system takes as input a 3D sketch—a set of 3D polylines, each 153 represented by 10 sampled points—and outputs a CAD program 154 that generates the intended 3D shape. We adopt an autoregressive 155 generation process that adds one CAD operation token and its cor- 156 responding parameters at each step. Each autoregressive step con- 157 sists of three actions. First, the system constructs a graph repre- 158 senting the current generation state (Section 4). Next, the policy 159

160 module predicts the next CAD operation and selects the relevant
 161 subset of strokes or loops to determine its parameters (Section 5).
 162 Then, the system executes the current program to produce an up-
 163 dated B-rep and compares it against the input 3D sketch to identify
 164 which strokes have been explained.

165 We maintain multiple program samples in parallel. After each
 166 step, once all samples have finished execution, a learned value func-
 167 tion evaluates their current states, and a resampling step reallocates
 168 computational resources to the most promising samples (Section 6).

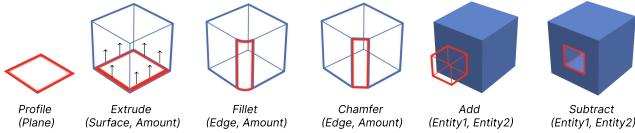


Figure 6: Our system supports six operations: profile, extrude, fillet, chamfer, add, and subtract.

169 Similar to previous sketch-to-CAD works [LPBM20, LPBM22,
 170 SLX*25] and many other CAD research efforts, our system sup-
 171 ports four fundamental CAD operations: profile, extrude,
 172 fillet, and chamfer (Figure 6). Boolean operations emerge
 173 from the extrude direction. Extruding outward add material, while
 174 extruding inward subtract material.

175 4. Graph Representation

176 At each autoregressive step t , we construct a heterogeneous graph
 177 $G_t = (V, E)$ that encodes the spatial relationships between strokes,
 178 their sequential order, and the current state of the CAD program
 179 (Figure 7a,b). To capture the program state, we execute the partially
 180 generated CAD program to produce a B-rep and compare it against
 181 the input 3D sketch to identify which strokes have already been
 182 explained (Figure 7c). This comparison provides spatial grounding,
 183 as it is difficult for neural networks to perform spatial reasoning
 184 solely from symbolic program tokens. The resulting unified graph
 185 is in one-to-one correspondence with the evolving CAD program,
 186 ensuring that each program state has a unique graph representation.
 187 This graph serves as input to both the policy module and the value
 188 network, providing information from both the sketch and the CAD
 189 program.

190 Prior work such as [YZF*21] represents sketches as graphs
 191 where nodes correspond to sampled points and edges to stroke
 192 segments. However, this approach captures only local geometry
 193 and struggles with more complex sketch structures. In contrast,
 194 Free2CAD [LPBM22] models sketches as sequences using a
 195 Transformer-based architecture to capture temporal order of
 196 strokes, but neglects spatial relationships and incurs substantial
 197 computational costs (9 days of training reported). Concurrently to
 198 our work, Sketch2Seq [SLX*25] is based on a graph structure that
 199 encodes strokes as nodes and local and distant spatial relationships
 200 as edges, but it ignores stroke ordering and larger entities such as
 201 loops formed by successive strokes.

202 Our method combines the strengths of these approaches: we en-
 203 code both sequential and spatial relationships in a unified graph
 204 structure using heterogeneous edge types. This allows for efficient

205 processing with a lightweight graph neural network that can be
 206 trained within a few hours. Furthermore, our graph includes two
 207 types of nodes: *stroke nodes* and *loop nodes*. Loop nodes repre-
 208 sent coplanar, closed groups of strokes that typically define profile
 209 regions for planar operations. These nodes ensure that the profile
 210 detection module can consistently identify closed, complete sketch
 211 planes. Another challenge is the *ambiguity of stroke roles*, where
 212 the purpose of a stroke may only become clear after earlier parts of
 213 the sketch are interpreted. Our graph representation addresses this
 214 by allowing each stroke to reason about its spatial and temporal
 215 neighbors and the usage status of those neighbors.

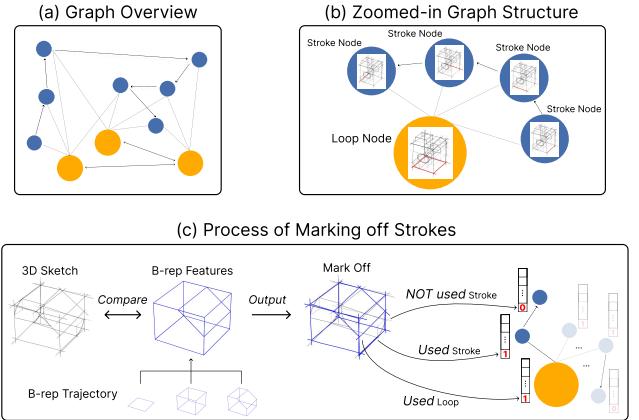


Figure 7: An overview of the graph (a), and a zoomed-in view (b). Panel (c) shows the process of marking off strokes. We execute the CAD program incrementally to produce all intermediate shapes generated throughout the process. This is because certain edge features, especially those involved in subtracts, may not appear in the final shape. The resulting mark-off (in blue) indicates which strokes have been explained by the current program.

216 4.1. Graph Nodes

217 The input 3D sketch is represented as a set of polylines, with each
 218 polyline sampled at 10 points. For each stroke, we fit a parametric
 219 function based on its geometry, including: straight lines, circular
 220 arcs, full circles, ellipses, and free-form curves. Each stroke node
 221 in our graph encodes the corresponding parametric function, the
 222 stroke's opacity, its type, and a binary label indicating whether it is
 223 used in the final B-rep. In contrast, each loop node contains only a
 224 binary indicator for B-rep usage. We provide additional details on
 225 the node feature representations in Appendix A.

226 4.2. Graph Edges

227 The graph edges capture both the spatial relationships between
 228 nodes and the temporal order of stroke execution. Stroke-order
 229 edges are defined directly from the sequence in which strokes are
 230 drawn, while all other edges are derived purely from geometric re-
 231 lations. To assess the contribution of each edge type, we perform an
 232 ablation study in Section 8.5. The edge categories are as follows:

- **Stroke-to-Stroke Edges:** Capture intersection between strokes in the 3D sketch.

- **Loop-to-Loop Edges:** Capture intersection, containment (which loop contains which), and perpendicular relationships between loops.
- **Stroke-to-Loop Edges:** Indicate which strokes constitute a particular loop.
- **Stroke-order Edges:** Capture the order in which strokes were drawn.

242 5. Policy Module

243 Our system autoregressively generates a CAD program $\mathcal{P} = 244 \{p_t\}_{t=1}^T$, where each $p_t = (o_t, \theta_t)$ denotes a CAD operation o_t and 245 its associated parameters θ_t . At each timestep t , the policy mod- 246 ule takes as input the graph constructed in Section 4 and performs 247 three tasks: (1) predicting the next CAD operation o_t (Section 5.2); 248 (2) selecting the relevant strokes from \mathcal{S} (Section 5.2); and (3) in- 249 ferring the operation parameters θ_t based on the selected strokes 250 (Section 5.3).

251 5.1. Graph Encoder

252 We use a shared Graph Convolutional Network (GCN) encoder to 253 compute node embeddings from the input graph G_t . These embed- 254 dings are then fed into task-specific decoders for different tasks. We 255 provide detailed architecture of the network in Appendix B.

256 5.2. Task-Specific Decoders

257 We design different decoders tailored to different tasks, each fol- 258 lowing a specific pipeline (see Figure 8), and train them separately.

259 5.2.1. (a) Operation prediction.

260 To predict the next CAD operation token, we perform cross- 261 attention between the program embedding (as query) and the graph 262 embeddings (as key and value), thereby annotating the program 263 with geometric context. We then apply self-attention over the an- 264 notated program embedding (the [CLS] token) to aggregate infor- 265 mation and produce the next program token:

$$266 \mathcal{L}_{\text{op}} = - \sum_{i=1}^{|\mathcal{O}|} y_i \log \hat{y}_{\text{op},i}. \quad (1)$$

267 Our loss function is the standard cross-entropy loss, which penal- 268 izes the model when it assigns low probability to the correct oper- 269 ation token.

270 5.2.2. (b-d) Stroke (or Loop) Feature Selection.

271 For operations that require geometric input, such as selecting a 272 loop for **Profile**, strokes for **Extrusion**, or strokes for **Fil- 273 let/Chamfer**, we perform binary classification over the relevant 274 nodes. For each node v , we compute a selection probability by min- imizing the following focal loss:

$$275 \mathcal{L}_{\text{stroke}} = - \sum_{i=1}^{|\mathcal{S}|} \alpha_i (1 - \hat{y}_{\text{stroke},i})^\gamma y_i \log \hat{y}_{\text{stroke},i}, \quad (2)$$

276 where $y_i \in \{0, 1\}$ indicates whether node i is selected, $\alpha_i = 1.0$, 277 and $\gamma = 1.5$. The focal loss [LGG*17] mitigates class imbalance

278 by down-weighting easy negatives, which is important for our case 279 since only a small fraction of nodes are typically selected at each 280 step.

281 The loss function in Eq. (2) serves as the common objective for 282 all geometric selection tasks. The specific pipeline for construct- 283 ing the candidate set of graph nodes, however, differs by task, as 284 described below:

- **Profile selection (b):** An MLP is applied to the loop embed- 285 dings, followed by binary classification. The loop with the high- 286 est probability is selected.
- **Extrusion (c):** During graph construction, sketch strokes corre- 287 sponding to previously used sketch operations are masked, so 288 the graph encodes which strokes are already chosen. The en- 289 coder produces graph embeddings, and an MLP predicts which 290 strokes are used for extrusion. A new graph is then built with 291 these strokes masked, re-encoded, and the decoder selects the 292 face created by the extrusion.
- **Fillet and chamfer selection (d):** An MLP is applied directly 293 to the stroke embeddings, followed by binary classification. The 294 contributing strokes are then selected.

295 5.2.3. (e) Value network.

296 After generating graph embeddings, we compute cross-attention 297 between the graph embeddings and their mean-pooled representa- 298 tion. This enables the network to capture both global and local fea- 299 tures of the graph. The resulting representation is passed through 300 an MLP to regress to a single scalar value.

301 5.3. Finding Operation Parameters

302 Given the strokes (or loops) selected for each operation, we ex- 303 tract continuous values required to execute that operation. A major 304 challenge is that the input strokes are sketches that are inherently 305 imprecise, making it difficult to recover exact parameter values 306 directly. To address this, we employ a set of geometric algorithms to 307 infer the parameters, as detailed in Appendix C.

310 6. SMC Based Program Sampling

311 Performing the entire autoregressive generation process in a sin- 312 gle shot is challenging. First, errors can accumulate across steps, 313 compounding over time. Second, 3D sketches are often ambigu- 314 ous so that multiple valid interpretations may exist, and later deci- 315 sions may depend on earlier ones. To capture this uncertainty and 316 maintain a diverse set of plausible solutions, we adopt a Se- 317 quential Monte Carlo (SMC) framework that maintains a set of samples 318 CAD programs, referred to as *particles*.

319 All particles are initialized from the same state: the empty pro- 320 gram. At each timestep t , each particle samples its next step from 321 the policy module, which involves predicting the next operation to- 322 ken and selecting the corresponding strokes. This procedure defines 323 the prior distribution:

$$324 p\left(x_{0:t}^{(i)}\right) = \prod_{k=1}^t p\left(x_k^{(i)} \mid x_{0:k-1}^{(i)}\right),$$

325 where $x_k^{(i)}$ denotes the program step chosen at time k by particle i .

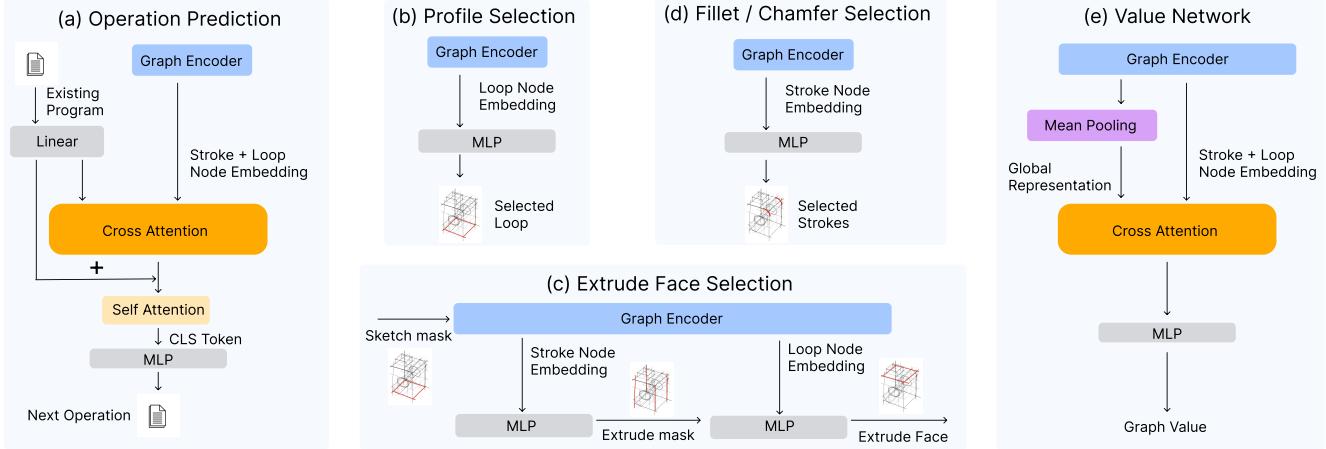


Figure 8: Overview of the decoder architecture. Each submodule is responsible for a specific task: (a) operation prediction, (b) profile selection, (c) extrude face selection, (d) fillet/chamfer selection, and (e) value network.

SMC then approximates the posterior distribution $p(x_{0:t} | y)$, where y is input graph G_t . As directly computing this posterior is intractable, SMC resamples the particles based on a learned value function $V(x_{0:t})$ (Section 6.1). This resampling helps recover from early mistakes and maintain diversity among plausible particles, which is particularly important for complicated sketches. In Figure 9 we show an example of this process.

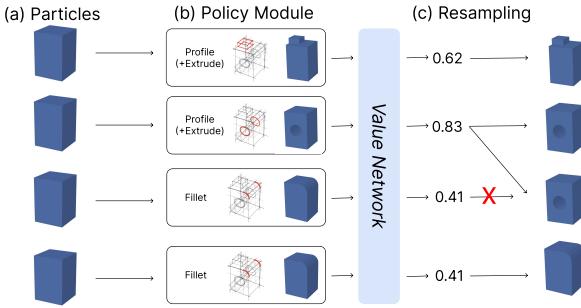


Figure 9: We present an example of resampling using SMC. After all particles pass through the policy module, the value network assigns each of them a score. The SMC then resamples based on these scores, shifting the distribution toward particles with higher likelihood.

6.1. Value Function

We need a scoring function that evaluates how well a candidate CAD program matches the target sketch. Since different execution orders of CAD operations can produce the same final B-rep, this value function must be order-invariant.

Previous works on CAD generation often evaluate their results by computing the Chamfer Distance between the generated B-rep and inputs such as voxels [UyCS*22, KSA23], point clouds [GLP*22, ZHFL23, LCP*24], or meshes [GXL13]. In contrast, directly comparing our generated B-rep with the input 3D sketch is not meaningful. Such a comparison only reveals which

strokes have been explained by the program. But many construction lines are not intended to appear in the final shape, and the input sketch itself is sparse.

Instead, we evaluate the generation process by computing the Chamfer distance between the generated B-rep and the ground-truth B-rep. However, during inference, the ground-truth shape is not available, making direct computation infeasible. To address this, we train a neural network that takes the current graph G_t as input and learns to predict a proxy for the Chamfer distance. This learned value function enables geometry-aware scoring of partial CAD programs without the ground truth during generation.

6.1.1. Immediate Value Estimation

A straightforward approach is to train our neural network to predict the Chamfer distance S_f of the current B-rep. However, as Chamfer distance is correlated with the volume of the shapes, operations that create larger volumes (e.g., extrude, which produces a solid block) might have greater impacts on the Chamfer distance than operations that modify smaller features (e.g., fillet, which rounds edges). In our experiments, we observe that the SMC sampling process with this immediate value estimation tend to favor samples that prioritized extrude operations, leading to a greedy search behavior.

6.1.2. Expected Value Estimation

A more principled way to evaluate a partial CAD program is by estimating the quality of its expected final output. Inspired by prior works such as AlphaGo [SHM*16, SSS*17], we construct a search tree that explores possible future executions from the current program state (Figure 10). The value of a partial program is then computed by aggregating the values of all possible completions, weighted by their probabilities. We define the value of a state s as:

$$V(s) = \sum_{a \in A} P(a|s) V(s')$$

where:

- $V(s)$ is the value of the current state.

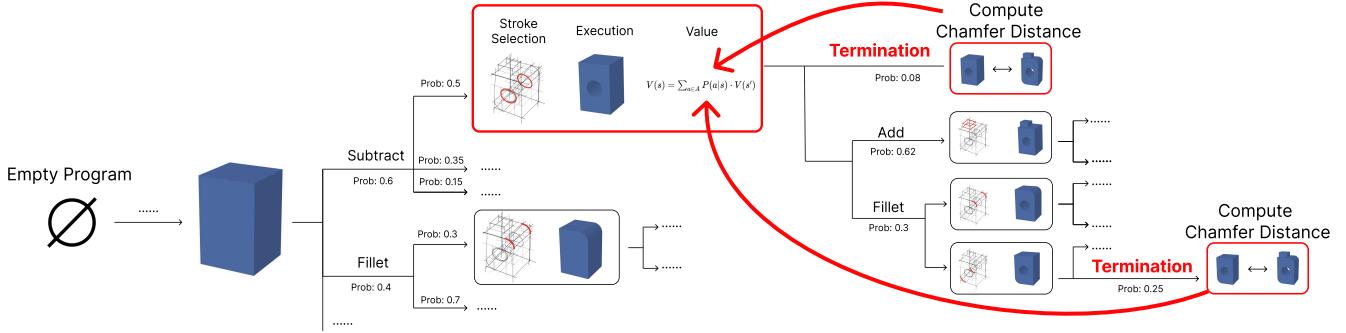


Figure 10: We build a tree from a a partial CAD program by simulating future actions. Each branch represents a possible choice by the policy module. Non-terminal states' values are based on their child nodes weighted by probabilities. Terminated states are evaluated using Chamfer distance to the ground truth shape.

375 • A is the set of possible operations from s .
 376 • $P(a|s)$ is the probability of writing program a from state s .
 377 • s' is the next state obtained by applying a to s .
 378 • $V(s')$ is the value of the next state, or the Chamfer distance if it
 379 is an termination state.

380 However, constructing a complete tree that explores all possible
 381 executions of the system is computationally infeasible. We approx-
 382 imate this process using Monte Carlo Tree Search (MCTS), which
 383 focuses exploration on high-impact branches. Implementation de-
 384 tails of our MCTS algorithm are provided in Appendix D.

385 To train the value network, we use the search trees generated by
 386 our MCTS procedure to construct a dataset that provides estimated
 387 values for program states at various stages of execution. We adopt
 388 the same graph encoder (detailed in Appendix B) to produce node
 389 embeddings, then passed through a value decoder (Figure 8) to pre-
 390 dict a scalar value representing the estimated quality of the current
 391 state. We train the value network using a contrastive loss that en-
 392 courages higher scores for better programs:

$$\mathcal{L}_{\text{value}} = \max(0, m - y \cdot (S_1 - S_2)),$$

393 where S_1 and S_2 are the predicted scores, $y \in \{1, -1\}$ indicates
 394 which program is better, and $m = 0.2$ is the margin.

395 7. Implementation

396 7.1. Dataset

397 We develop a novel method to generate noisy synthetic 3D sketches
 398 that imitate human sketches (detailed in Appendix E) and prepare
 399 two datasets using it. The first dataset (Figure 12 and Figure 14),
 400 introduced by [HLMB22], consists of 1361 CAD program and 3D
 401 sketch pairs and includes `profile`, `extrude`, and `fillet` op-
 402 erations. Each program contains exactly 8 operations, and the re-
 403 sulting sketches have an average of 78.6 strokes, with a minimum
 404 of 35 and a maximum of 143 strokes. To increase diversity and
 405 complexity, we procedurally generate a second dataset comprising
 406 4000 CAD program and 3D sketch pairs (Figure 13 and Figure 15),
 407 covering all four basic operations: `profile`, `extrude`, `fil-
 408 let`, and `chamfer`. Program lengths range from 3 to 15 opera-
 409 tions, with an average of 9.2. The resulting sketches vary from 17

410 strokes at the simplest end to 307 strokes at the most complex, with
 411 an average of 122.3 strokes.

412 Both datasets are divided into 80% for training and 20% for val-
 413 idation. They feature diverse designs (exampled in Figure 14, 15)
 414 and differs in program length, program patterns, spatial relation-
 415 ships between strokes, as well as in how feature lines and con-
 416 struction lines are drawn. We train on these datasets jointly to high-
 417 light generality. In Section 8, we present results from training both
 418 separately and jointly (by randomly merging them into a single
 419 combined dataset), demonstrating our system's ability to generalize
 420 across a wide range of sketching styles.

421 7.2. Network Training and Inference

422 We implement our neural networks in PyTorch Geometric and will
 423 release the code upon acceptance. Training is performed on an
 424 NVIDIA GeForce RTX 4090 GPU: policy networks train in ~ 2
 425 hours, and the value network in ~ 10 hours. At inference time, our
 426 system generates a CAD program (9 operations) in ~ 30 seconds
 427 using 30 parallel particles in the SMC framework.

428 8. Results and Evaluation

429 8.1. Baseline Method : Order Based Reconstruction

430 We implemented a baseline algorithm that processes strokes in the
 431 order they were drawn. In this approach, strokes are sequentially
 432 added, and whenever they form a closed loop, the algorithm groups
 433 them into a sketch loop. When such loops correspond to higher-
 434 level entities (e.g., a cuboid), the algorithm generates the corre-
 435 sponding sketch and extrude operations to construct the intended
 436 geometry.

437 However, this approach faces two major challenges. First, artists
 438 often draw in inconsistent order, sometimes revisiting earlier parts
 439 of the sketch. Second, sketches frequently include construction
 440 lines, which can form loops with feature lines. This algorithm often
 441 mistakenly interpret these as valid sketches, resulting in errors. To
 442 evaluate this method, we selected 100 short programs from Dataset
 443 B (each containing only six operations). The baseline succeeded in

444 generating only 1 out of 100 shapes, clearly illustrating its limitations.
 445

446 8.2. Baseline Method : Stroke Filtering as Preprocessing

447 Another baseline method we consider is a two-stage pipeline. The
 448 first stage selects strokes that either appear in the final shape or in
 449 intermediate shapes, since these strokes can help generate the entire
 450 CAD generation process. Such strokes include both feature lines
 451 and a subset of construction lines. Our objective is to use only these
 452 selected strokes to predict the CAD program, thereby reducing the
 453 burden on the network. Specifically, we train a network to perform
 454 binary classification of strokes, separating those that are ever used
 455 in the shape's generation history (i.e. present in intermediate shapes
 456 or the final shape) from those that are not (i.e. construction lines
 457 used solely for perspective correction). This classifier adopts the
 458 same graph encoder as our main pipeline to compute node embed-
 459 dings, followed by a multilayer perceptron (MLP) that operates on
 460 the stroke nodes.

461 We evaluated this approach on 500 shapes sampled from
 462 Dataset B. The preprocessing network achieved an accuracy of
 463 86.2% in distinguishing between the two categories of lines. How-
 464 ever, only 173/500 examples retained all the lines required to fully
 465 generate the program. For the remaining 327/500 examples, recov-
 466 ering the correct program was difficult regardless of the generation
 467 algorithm. This stroke pre-processing does not work well because
 468 it is inherently challenging to determine which construction lines
 469 are essential for the generation process in a single-shot prediction.
 470 In contrast, our method (proposed in this work) addresses this chal-
 471 lenge through an autoregressive formulation, where later predic-
 472 tions can build on earlier ones, making it easier to capture the nec-
 473 essary lines for program recovery. We provide example results of
 474 predicting lines that are used in the shape's generation history in
 475 Figure 11.

476 8.3. Overall Performance

477 We train our network on the two datasets both separately and
 478 jointly. Joint training on Dataset A and Dataset B enables broader
 479 generalization, but it also introduces challenges due to stylistic in-
 480 consistencies between the datasets. For example, Dataset B often
 481 uses diagonal lines to denote profile planes, whereas Dataset A
 482 does not (Figure 14, Figure 15). Such differences can confuse the
 483 network, since identical operations are represented with different
 484 visual cues. Nevertheless, our system remains capable of making
 485 valid predictions by reasoning about underlying spatial rela-
 486 tionships rather than relying solely on dataset-specific patterns. This
 487 indicates that the model learns to infer higher-level geometric in-
 488 tent, contributing to its robustness.

489 To assess shape quality, we compute the Chamfer distance be-
 490 tween the generated shape and the ground-truth shape in the vali-
 491 dation set, using 300 uniformly sampled surface points. A genera-
 492 tion is considered successful if the Chamfer distance is less than
 493 1% of the bounding box diagonal of the ground truth shape. We
 494 also present several failure cases and their underlying causes in Fig-
 495 ure 16.

496 We observe that the value function often struggles to distinguish
 497

500 **Table 1:** Top-3 results success rate (%) with different sampling
 501 methods.

Value Function	Dataset A	Dataset B	Joint (A + B)
No Sampling / No Value Function	59.0%	67.0%	48.0%
Immediate Value Function	82.0%	89.0%	80.0%
MCTS based Value Function	82.0%	91.0%	82.5%

506 **Table 2:** Accuracy (%) for operation prediction and corresponding
 507 strokes (or loops) selection across different dataset setups.

Task Type	Dataset A	Dataset B	Joint (A + B)
Profile	88.7%	94.2%	82.2%
Extrude	94.2%	97.4%	93.3%
Fillet	89.6%	99.6%	94.5%
Chamfer	/	82.7%	/
Next Operation	99.7%	89.9%	92.1%

508 fine-grained shape differences, particularly those involving small
 509 features such as fillet or chamfer operations. To mitigate this
 510 limitation, our system returns the top-3 predicted shapes, ranked by
 511 the value function, and allows users to select their preferred result.

512 In Table 1, we compare the effectiveness of three sampling
 513 strategies: (1) a baseline without resampling, (2) SMC sampling
 514 with resampling based on an immediate value function (Section
 515 6.1.1), and (3) SMC sampling guided by a value function trained to
 516 estimate the expected final outcome (Section 6.1.2).

517 The value function trained on expected final values does not
 518 provide any improvement over the immediate value function on
 519 Dataset A, whereas it shows a more noticeable benefit on Dataset B.
 520 This is likely because all programs in Dataset A follow a fixed op-
 521 eration sequence. As a result, greedy strategies that prioritize high
 522 impact operations like extrusion do not lead to incorrect programs.

523 8.4. Accuracy on Individual Tasks

524 We further assess the accuracy of individual modules (Table 2),
 525 covering operation prediction and stroke selection for **profile**,
 526 **extrude**, **fillet**, and **chamfer**. Chamfer accuracy is not re-
 527 ported for Dataset A, since it contains no chamfer operations, and
 528 is also omitted for joint training, as the results are identical to those
 529 of Dataset B. A prediction is considered correct only if all corre-
 530 sponding strokes (or loops) are selected.

531 8.5. Ablation Study: Graph Design

532 We examine our graph design by removing different graph edge
 533 types and record the network's performance on **profile**, **ex-
 534 trude** and **fillet** stroke selections on Dataset A. We show in
 535 Table 3, that removing any of these graph edges would lead to a
 536 decrease in certain tasks. Additionally, we experiment with a graph

Table 3: Ablation study of graph design. We report average accuracy for *Profile*, *extrude*, and *Fillet* selection tasks.

Edge Type Removed	Profile	Extrude	Fillet
Full Graph	88.7	94.2	89.6
Stroke-intersect-Stroke	86.7%	65.1%	82.1%
Loop-perpendicular-Loop	81.1%	84.4%	87.7%
Loop-contains-Loop	69.3%	93.6%	89.2%
Stroke-to-Loop	82.3%	13.5%	85.6%
Stroke Order	67.2%	92.8%	70.4%
No Loop Nodes	45.6%	/	/

Table 4: Top-3 results success rate (%) on Dataset B across different program lengths and numbers of SMC particles.

Particles	< 5 Step	5–7 Step	8–10 Step	11–15 Step
30 Particles	99.2%	94.4%	82.9%	38.5%
50 Particles	99.2%	95.1%	83.9%	48.0%
100 Particles	99.2%	95.1%	87.4%	52.1%

526 that contains only stroke nodes. In this setting, the *profile* prediction
 527 is reformulated as identifying all strokes that form the profile region. The result of this variant is shown in the last row of the
 528 table.
 529

530 8.6. Impact of Program Length and Sampling Budget

531 Our system’s performance declines as the length of the target CAD
 532 program increases. Also larger number of particles during the SMC
 533 sampling process may improve results. We quantify this relation-
 534 ship using Dataset B (which has varying program length) in table 4.

535 Our system performance degrades significantly for programs
 536 longer than 10 steps, and especially beyond 12. These failure cases
 537 often involve missing smaller geometric features, such as *fil-
 538 lets* or *chamfers* (Figure 16). This degradation is likely due to
 539 several factors. First, longer programs correspond to sketches with
 540 more strokes, which inherently increases difficulty of the genera-
 541 tion process. Second, autoregressive models are more prone to er-
 542 rors as sequence length increases. Third, the value estimation func-
 543 tion performs less reliably on complicated densely sketches, which
 544 makes it hard to identify the 3 most promising final outputs.

545 8.7. Results Comparison with Free2CAD

546 We demonstrate that incorporating construction lines enables our
 547 method to reconstruct shapes that previous approaches, such as
 548 Free2CAD [LPBM22], fail to capture. The limitation arises be-
 549 cause relying solely on feature lines makes it difficult to recover
 550 the complex sequence of additive and subtractive operations. Mul-
 551 tiple edits may occur in the same spatial region and their traces are
 552 often absent in the final geometry.

553 In Figure 17, we highlight six examples taken from the
 554 Free2CAD supplemental material where the system was unable
 555 to generate the correct shapes. Since the original sketches contain

556 only feature lines, important details are lost and the resulting re-
 557 constructions deviate from the intended design. To address this, we
 558 redrew the sketches with construction lines and applied our method.
 559 The inclusion of construction lines provides additional cues about
 560 intermediate structures in the modeling process, allowing our ap-
 561 proach to accurately interpret them and produce final shapes that
 562 more closely match the sketch’s intent.

563 8.8. Evaluating on Synthetic 2D Sketches

564 We qualitatively evaluate our method on synthetic 2D sketch
 565 drawings that are lifted to 3D to simulate noisy 3D sketches.
 566 Specifically, we first sample a subset of examples from
 567 CAD2Sketch [HLMB22], which generates 2D sketches from 3D
 568 shapes. We then uplift these sketches into 3D space using a
 569 symmetry-based algorithm [HGSB22]. As shown in Figure 18, our
 570 method successfully reconstructs the intended shapes.

571 8.9. User Study: Creating 3D Shape from 2D Sketches

572 We further evaluated our method on real-world 2D drawings.
 573 Specifically, we invited three students with limited prior CAD de-
 574 sign experience and one student designer proficient in CAD design
 575 to create 2D sketches using an existing drawing interface equipped
 576 with a 3D lifting algorithm [WB25, HGSB22] (Appendix F). The
 577 resulting 3D sketches were then processed with CADrawer to gen-
 578 erate 3D B-rep shapes. Each participant first received a brief 15-
 579 minute tutorial on the UI system (Appendix F) and on perspec-
 580 tive drawing. They were then asked to produce three sketches of
 581 their choice in 2D space, which the system automatically uplifted
 582 into 3D sketches. While the participants exhibited diverse sketch-
 583 ing habits, most of them used construction lines, consistent with
 584 our assumption (further discussed in Appendix G).

585 On average, participants spent about 21 minutes completing all
 586 three sketches. Students with limited prior CAD design experience
 587 found perspective drawing increasingly difficult as the sketches
 588 grew more complex, whereas the proficient student designer found
 589 our UI more intuitive and convenient. We then applied CADrawer
 590 to translate these 3D sketches into CAD programs, with the results
 591 presented in Figure 19.

592 We used a 5-point scale (1 = very unsatisfied/very different, 5
 593 = very satisfied/highly similar) to evaluate participant feedback.
 594 Overall, participants reported a high level of satisfaction with both
 595 the sketching process and the automatic 3D lifting. The average
 596 similarity score was 4.6/5, indicating that the generated shapes
 597 were generally considered close to the original sketches. The sys-
 598 tem also received an average ease-of-use rating of 4.2/5. All par-
 599 ticipants with limited CAD experience agreed that it made creating
 600 3D shapes easier than working directly with CAD software. In con-
 601 trast, the proficient student designer found direct modeling in CAD
 602 software easier and more intuitive.

603 8.10. User Study: Expert Manual Shape Reconstruction

604 We also conducted a second user study to directly compare hu-
 605 man experts in reconstructing 3D shapes from sketch drawing with
 606 the automated generation process of CADrawer. We invited three

607 student designers from a prestigious design school, each proficient 660 [CLS19] CHEN X., LIU C., SONG D.: Execution-guided neural program
608 in CAD software and experienced in manual modeling work- 661 synthesis. *ICLR* (2019). Presented at ICLR 2019. 3
609 flows. In this study, participants were provided with six 3D sketches 662 [CRN*22] COLLIGAN A. R., ROBINSON T. T., NOLAN D. C., HUA
610 and asked to reconstruct the corresponding B-rep shapes manually, 663 Y., CAO W.: Hierarchical cadnet: Learning from b-reps for machining
611 without the assistance of our system. 664 feature recognition. *Computer-Aided Design* 147 (June 2022). doi:
665 10.1016/j.cad.2022.103226. 3

612 During the process, we observed that participants often strug- 666 [CSMS13] CORDIER F., SEO H., MELKEMI M., SAPIDIS N. S.: Infer-
613 gled with sketches that involved complex modeling steps, particu- 667 ring mirror symmetric 3d shapes from sketches. *Computer Aided Design*
614 larly those requiring multiple subtraction operations. Overlapping 668 45, 2 (2013). 3
615 strokes frequently created visual ambiguities, making it difficult to 669 [DIP*18] DU T., INALA J. P., PU Y., SPIELBERG A., SCHULZ A., RUS
616 determine the intended sequence of operations. Participants also 670 D., SOLAR-LEZAMA A., MATUSIK W.: Inversecsg: Automatic conver-
617 encountered challenges in accurately interpreting perspective from 671 sion of 3d models to csg trees. *ACM Transactions on Graphics (Proc.*
618 the sketches, whereas CADrawer automatically extracts precise 672 *SIGGRAPH Asia* 37, 6 (2018). 3
619 geometric parameters from strokes. 673 [ENP*19] ELLIS K., NYE M., PU Y., SOSA F., TENENBAUM J.,
620 At the same time, human designers demonstrated strong context- 674 SOLAR-LEZAMA A.: Write, execute, assess: Program synthesis with
621 tual reasoning and an ability to infer design intent beyond what was 675 a repl. *ICML* (June 2019). doi:10.48550/arXiv.1906.04604. 3
622 explicitly drawn. This often allowed them to avoid certain mistakes 676 [ERSLT18] ELLIS K., RITCHIE D., SOLAR-LEZAMA A., TENENBAUM
623 made by our system, such as misinterpreting partially drawn or am- 677 J. B.: Learning to infer graphics programs from hand-drawn images.
624 biguous strokes. Notably, they could still infer correct parameters 678 *NeurIPS* (July 2018). doi:10.48550/arXiv.1707.09627. 3
625 even when stroke values extended beyond the thresholds used by 679 [EWN*21] ELLIS K., WONG C., NYE M., SABLÉ-MEYER M.,
626 our algorithm. 680 MORALES L., HEWITT L., CARY L., SOLAR-LEZAMA A., TENEN-
681 [EWN*21] We present a side-by-side comparison of the manually created 681 BAUM J. B.: Dreamcoder: Bootstrapping inductive program synthesis
682 shapes and the results generated by our system in Figure 20. This 682 with wake-sleep library learning. In *Proceedings of the ACM SIGPLAN*
683 comparison illustrates the complementary strengths of expert hu- 683 *International Symposium on New Ideas, New Paradigms, and Reflec-*
684 man reasoning and automated CAD generation. 684 *tions on Programming and Software (Onward!)* (2021), ACM, pp. 835–
685 850. URL: <https://doi.org/10.1145/3486607.3486750>, 685 doi:10.1145/3486607.3486750. 10
686 [GHL*20] GRYADITSKAYA Y., HÄHNLEIN F., LIU C., SHEFFER A.,
687 BOUSSEAU A.: Lifting freehand concept sketches into 3d. *TOG* 39, 6
688 (Nov 2020). doi:10.1145/3414685.3417851. 2, 3
689 [GLP*22] GUO H., LIU S., PAN H., LIU Y., TONG X., GUO B.: Com-
690 plexgen: Cad reconstruction by b-rep chain complex generation. *ACM*
691 [GLP*22] *Transactions on Graphics (SIGGRAPH)* 41, 4 (2022). 3, 6
692 [GSH*19] GRYADITSKAYA Y., SYPESTEYN M., HOFTIJZER J. W.,
693 PONT S., DURAND F., BOUSSEAU A.: Opensketch: A richly-annotated
694 dataset of product design sketches. *ACM Transactions on Graphics*
695 [GSH*19] (Proc. *SIGGRAPH Asia*) (2019). 2
696 [GXL13] GAO S., XU X., LIN C.: Topology reconstruction for
697 b-rep modeling from 3d mesh in reverse engineering applications.
698 *Computer-Aided Design* 45, 2 (2013), 496–507. URL: https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications,
699 doi:10.1016/j.cad.2012.10.010. 6
700 [HEN12] HENRY K.: *Drawing for product designers*. Laurence King
701 Publishing, 2012. 1
702 [HGSB22] HÄHNLEIN F., GRYADITSKAYA Y., SHEFFER A.,
703 BOUSSEAU A.: Symmetry-driven 3d reconstruction from concept
704 sketches. *SIGGRAPH* (July 2022). doi:10.1145/3528233.3530723. 2, 3, 9, 15, 17
705 [HKYM16] HUANG H., KALOGERAKIS E., YUMER E., MECH R.:
706 Shape synthesis from sketches via procedural models and convolutional
707 networks. *IEEE Transactions on Visualization and Computer Graphics*
708 (TVCV) 22, 10 (2016), 1. 3
709 [HLMB22] HÄHNLEIN F., LI C., MITRA N. J., BOUSSEAU A.:
710 Cad2sketch: Generating concept sketches from cad sequences. *ACM*
711 [HLMB22] *Transactions on Graphics (TOG)* 41 (November 2022), 1–18. doi:
712 10.1145/3550454.3555488. 1, 7, 9, 15
713 [JGMR23] JONES R. K., GUERRERO P., MITRA N. J., RITCHIE D.:
714 Shapecoder: Discovering abstractions for visual programs from unstruc-
715 tured primitives. *arXiv preprint arXiv:2305.05661* (2023). Presented
716 at SIGGRAPH 2023. URL: <https://arxiv.org/abs/2305.05661>, doi:10.48550/arXiv.2305.05661. 10
717 [JGMR23] 718

654 **References**

655 [CF25] CHEREDDY S., FEMIANI J.: Sketchcdn: Joint continuous- 719
656 discrete diffusion for CAD sketch generation. In *Proceedings of the 42nd 720
657 International Conference on Machine Learning (ICML)* (2025), PMLR, 721
658 pp. 1–17. 17 pages, 63 figures. URL: <https://arxiv.org/abs/2507.11579>. 3 722
659 723

724 [JHC*21] JONES B., HILDRETH D., CHEN D., BARAN I., KIM V. G., SCHULZ A.: Automate: A dataset and learning approach for automatic mating of cad assemblies. *ACM Transactions on Graphics (TOG)* 40 (December 2021), 1–18. [doi:10.1145/3478513.3480562](https://doi.org/10.1145/3478513.3480562). 3

725 [JNK*23] JONES B., NOECKEL J., KODNONGBA M., BARAN I., SCHULZ A.: B-rep matching for collaborating across cad systems. *ACM Transactions on Graphics* 42 (August 2023). [doi:10.1145/3592125](https://doi.org/10.1145/3592125). 3

726 [JWR22] JONES R. K., WALKE H., RITCHIE D.: Plad: Learning to infer shape programs with pseudo-labels and approximate distributions. *arXiv preprint arXiv:2011.13045* (2022). Presented at CVPR 2022. URL: <https://arxiv.org/abs/2011.13045>, [doi:10.48550/arXiv.2011.13045](https://doi.org/10.48550/arXiv.2011.13045). 10

727 [KMP*18] KALYAN A., MOHTA A., POLOZOV O., BATRA D., JAIN P., GULWANI S.: Neural-guided deductive search for real-time program synthesis from examples. *arXiv* (April 2018). Published in ICLR 2018, International Conference on Learning Representations. [doi:10.48550/arXiv.1804.01186](https://doi.org/10.48550/arXiv.1804.01186). 3

728 [KSA23] KUZNETSOV P., SPITSYN A., ARUTYUNOV R.: Simplification of 3d cad model in voxel form for mechanical parts using a gan-based network. *Computer-Aided Design* 162 (2023). URL: <https://www.sciencedirect.com/science/article/pii/S0010448523001094>, [doi:10.1016/j.cad.2023.103461](https://doi.org/10.1016/j.cad.2023.103461). 6

729 [LB25] LIU C., BESSMELTSEV M.: State-of-the-art report in sketch processing. *Computer Graphics Forum* (2025). 2

730 [LCLT08] LIU J., CAO L., LI Z., TANG X.: Plane-based optimization for 3d object reconstruction from single line drawings. *IEEE Transaction on Pattern Analysis Machine Intelligence* 30, 2 (2008), 315–327. 3

731 [LCP*24] LIU Y., CHEN J., PAN S., COHEN-OR D., ZHANG H., HUANG H.: Split-and-fit: Learning b-reps via structure-aware voronoi partitioning. *ACM Transactions on Graphics (TOG)* 43, 4 (2024), 108:1–108:13. URL: <https://doi.org/10.1145/3658155>, [doi:10.1145/3658155](https://doi.org/10.1145/3658155). 6

732 [LGG*17] LIN T.-Y., GOYAL P., GIRSHICK R., HE K., DOLLÁR P.: Focal loss for dense object detection. *arXiv preprint arXiv:1708.02002* (2017). Presented at ICCV 2017. URL: <https://arxiv.org/abs/1708.02002>, [doi:10.48550/arXiv.1708.02002](https://doi.org/10.48550/arXiv.1708.02002). 5

733 [LOWS23] LIU Y., OBUKHOV A., WEGNER J. D., SCHINDLER K.: Point2cad: Reverse engineering cad models from 3d point clouds. *CVPR* (December 2023). [doi:10.48550/arXiv.2312.04962](https://doi.org/10.48550/arXiv.2312.04962). 3

734 [LPBM20] LI C., PAN H., BOUSSEAU A., MITRA N. J.: Sketch2cad: Sequential cad modeling by sketching in context. *TOG* 39, 6 (Nov 2020). [doi:10.1145/3414685.3417807](https://doi.org/10.1145/3414685.3417807). 1, 2, 3, 4

735 [LPBM22] LI C., PAN H., BOUSSEAU A., MITRA N. J.: Free2cad: Parsing freehand drawings into cad commands. *TOG* 41, 4 (July 2022). [doi:10.1145/3528223.3530133](https://doi.org/10.1145/3528223.3530133). 1, 2, 3, 4, 9, 14, 17

736 [LS96] LIPSON H., SHPITALNI M.: Optimization-based reconstruction of a 3d object from a single freehand line drawing. *Computer-Aided Design* 28, 8 (1996). 3

737 [LWJ*22] LAMBOURNE J. G., WILLIS K., JAYARAMAN P. K., ZHANG L., SANGHI A., MALEKSHAN K. R.: Reconstructing editable prismatic cad from rounded voxel models. In *SIGGRAPH Asia Conference Papers* (2022). 3

738 [NGDGA*16] NISHIDA G., GARCIA-DORADO I., G. ALIAGA D., BENES B., BOUSSEAU A.: Interactive sketching of urban procedural models. *ACM Transactions on Graphics (Proc. SIGGRAPH)* (2016). 3

739 [PCV16] PLUMED R., COMPANY P., VARLEY P. A.: Detecting mirror symmetry in single-view wireframe sketches of polyhedral shapes. *Computers & Graphics* 59 (2016), 1–12. 3

740 [PMKB23] PUHACHOV I., MARTEENS C., KRY P. G., BESSMELTSEV M.: Reconstruction of machine-made shapes from bitmap sketches. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)* 42, 6 (2023). 3

741 [RDM*24] RUKHOVICH D., DUPONT E., MALLIS D., CHERENKOVA K., KACEM A., AOUADA D.: Cad-recode: Reverse engineering cad code from point clouds. *arXiv preprint arXiv:2412.14042* (2024). [arXiv:2412.14042](https://arxiv.org/abs/2412.14042), [doi:10.48550/arXiv.2412.14042](https://doi.org/10.48550/arXiv.2412.14042). 3

742 [RGJ*23] RITCHIE D., GUERRERO P., JONES R. K., MITRA N. J., SCHULZ A., WILLIS K. D., WU J.: Neurosymbolic models for computer graphics. *Computer Graphics Forum* 42, 2 (2023), 545–568. 2

743 [SGL*18] SHARMA G., GOYAL R., LIU D., KALOGERAKIS E., MAJI S.: Csgnet: Neural shape parser for constructive solid geometry. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)* (2018). 3

744 [SHM*16] SILVER D., HUANG A., MADDISON C. J., GUEZ A., SIFRE L., DRIESSCHE G. V. D., SCHRITTWIESER J., ANTONOGLOU I., PANNEERSHELVAM V., LANCTOT M., DIELEMAN S., GREWE D., NHAM J., KALCHBRENNER N., SUTSKEVER I., LILLICRAP T., LEACH M., KAVUKCUOGLU K., GRAEPEL T., HASSABIS D.: Mastering the game of go with deep neural networks and tree search. *Nature* 529, 7587 (2016), 484–489. URL: <https://www.nature.com/articles/nature16961>, [doi:10.1038/nature16961](https://doi.org/10.1038/nature16961). 6

745 [SKSK09] SCHMIDT R., KHAN A., SINGH K., KURTENBACH G.: Analytic drawing of 3d scaffolds. In *ACM transactions on graphics (Proc. SIGGRAPH Asia)* (2009), vol. 28. 2, 3

746 [SLK*20] SHARMA G., LIU D., KALOGERAKIS E., MAJI S., CHAUDHURI S., MĚCH R.: Parsenet: A parametric surface fitting network for 3d point clouds. In *Proc. European Conference on Computer Vision (ECCV)* (2020). 3

747 [SLX*25] SUN Y., LI J., XU Z., ZHANG J., LIU X., ZHANG D., LU G.: Sketch2seq: Reconstruct CAD models from feature-based sketch segmentation. *IEEE Transactions on Visualization and Computer Graphics* 31, 10 (Oct. 2025), 8214–8230. [doi:10.1109/TVCG.2025.3566544](https://doi.org/10.1109/TVCG.2025.3566544). 1, 2, 3, 4, 17

748 [SSS*17] SILVER D., SCHRITTWIESER J., SIMONYAN K., ANTONOGLOU I., HUANG A., GUEZ A., HUBERT T., BAKER L., LAI M., BOLTON A., CHEN Y., LILLICRAP T., HUI F., SIFRE L., DRIESSCHE G. V. D., GRAEPEL T., HASSABIS D.: Mastering the game of go without human knowledge. *Nature* 550, 7676 (2017), 354–359. URL: <https://www.nature.com/articles/nature24270>, [doi:10.1038/nature24270](https://doi.org/10.1038/nature24270). 6

749 [Sto08] STORER I.: Reflecting on professional practice : capturing an industrial designer's expertise to support the development of the sketching capabilities of novices. *Design and Technology Education: An International Journal* 10, 1 (May 2008), 54–72. 1

750 [TLS*19] TIAN Y., LUO A., SUN X., ELLIS K., FREEMAN W. T., TENENBAUM J. B., WU J.: Learning to infer and execute 3d shape programs. *arXiv* (January 2019). Presented at ICLR 2019. [doi:10.48550/arXiv.1901.02875](https://doi.org/10.48550/arXiv.1901.02875). 3

751 [UyCS*22] UY M. A., YU CHANG Y., SUNG M., GOEL P., LAMBOURNE J., BIRDAL T., GUIBAS L.: Point2cyl: Reverse engineering 3d objects from point clouds to extrusion cylinders. *CVPR* (June 2022). [doi:10.48550/arXiv.2112.09329](https://doi.org/10.48550/arXiv.2112.09329). 6

752 [WB25] WEI J., BOUSSEAU A. (Eds.): *A Blender Add-on for 3D Concept Sketching* (2025), ACM/EG Expressive Symposium - Posters and Demos. URL: <http://www-sop.inria.fr/reves/Basilic/2025/WB25>. 2, 9, 17, 18

753 [WJC*22] WILLIS K. D., JAYARAMAN P. K., CHU H., TIAN Y., LI Y., GRANDI D., SANGHI A., TRAN L., LAMBOURNE J. G., SOLARLEZAMA A., MATUSIK W.: Joinable: Learning bottom-up assembly of parametric cad joints. *CVPR* (April 2022). [doi:10.48550/arXiv.2111.12772](https://doi.org/10.48550/arXiv.2111.12772). 3

754 [WXW18] WU Q., XU K., WANG J.: Constructing 3d csg models from 3d raw point clouds. *Computer Graphics Forum* 37, 5 (2018). 3

755 [WXZ21] WU R., XIAO C., ZHENG C.: Deepcad: A deep generative network for computer-aided design models. *ICCV* (October 2021). [doi:10.48550/arXiv.2105.09492](https://doi.org/10.48550/arXiv.2105.09492). 3

851 [WZW*24] WANG H., ZHAO M., WANG Y., QUAN W., YAN
852 D.-M.: VQ-CAD: Computer-aided design model generation with
853 vector quantized diffusion. *Computer Aided Geometric Design*
854 111 (2024), 102327. URL: <https://www.sciencedirect.com/science/article/pii/S016783962400061X>,
855 doi:10.1016/j.cagd.2024.102327. 3

857 [XCS*14] XU B., CHANG W., SHEFFER A., BOUSSEAU A., MCCRAE
858 J., SINGH K.: True2form: 3d curve networks from 2d sketches via selec-
859 tive regularization. *ACM Transactions on Graphics (SIGGRAPH 2014
860 Papers)* 33 (2014). doi:10.1145/2601097.2601204. 3

861 [XPC*21] XU X., PENG W., CHENG C.-Y., WILLIS K. D., RITCHIE
862 D.: Inferring cad modeling sequences using zone graphs. *CVPR* (April
863 2021). doi:10.48550/arXiv.2104.03900. 3

864 [YDSG21] YU X., DiVERDI S., SHARMA A., GINGOLD Y.: ScaffoldS-
865 ketch: Accurate industrial design drawing in vr. In *Proceedings of ACM
866 Symposium on User Interface Software and Technology* (2021), UIST. 2

867 [YLT13] YANG L., LIU J., TANG X.: Complex 3d general object re-
868 construction from line drawings. In *IEEE Int. Conference on Computer
869 Vision* (2013). 3

870 [YZF*21] YANG L., ZHUANG J., FU H., WEI X., ZHOU K., ZHENG Y.:
871 Sketchgnn: Semantic sketch segmentation with graph neural networks.
872 *ACM Transactions on Graphics* 40, 3 (2021). 4

873 [ZHFL23] ZONG Z., HE F., FAN R., LIU Y.: P2cadnet: An end-to-end
874 reconstruction network for parametric 3d cad model from point clouds.
875 *CoRR abs/2310.02638* (2023). URL: <https://arxiv.org/abs/2310.02638>. 6

876

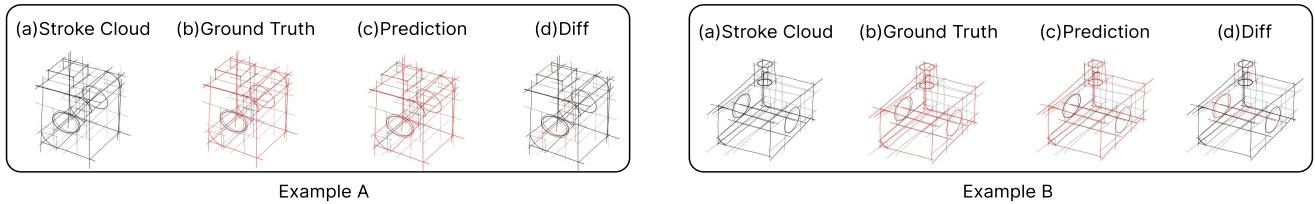


Figure 11: Stroke filtering as a preprocessing step. We show two sets of results where strokes are classified as either used in the generation history or not. In both examples, some essential strokes are excluded, making the correct reconstructing infeasible.

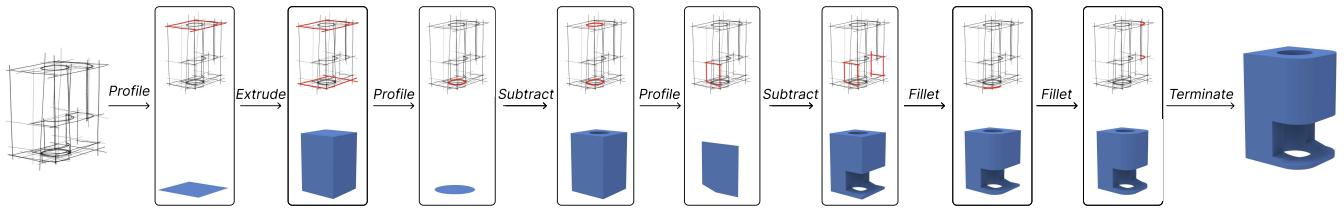


Figure 12: We show the entire process of generating a CAD program from Dataset A. For each step, the selected strokes (highlighted in red) are shown at the top of the box, while the generated B-rep is shown at the bottom.

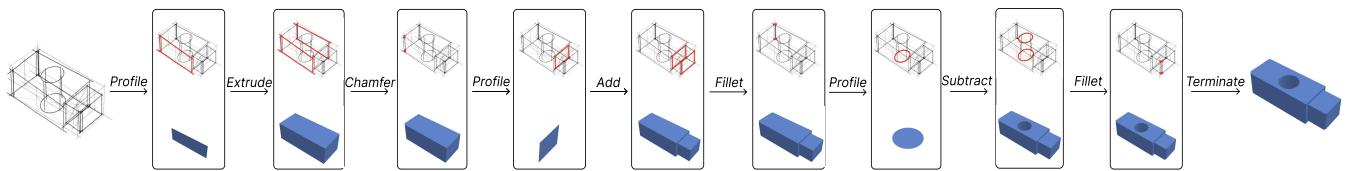


Figure 13: We show the entire process of generating a CAD program from Dataset B. For each step, the selected strokes (highlighted in red) are shown at the top of the box, while the generated B-rep is shown at the bottom.

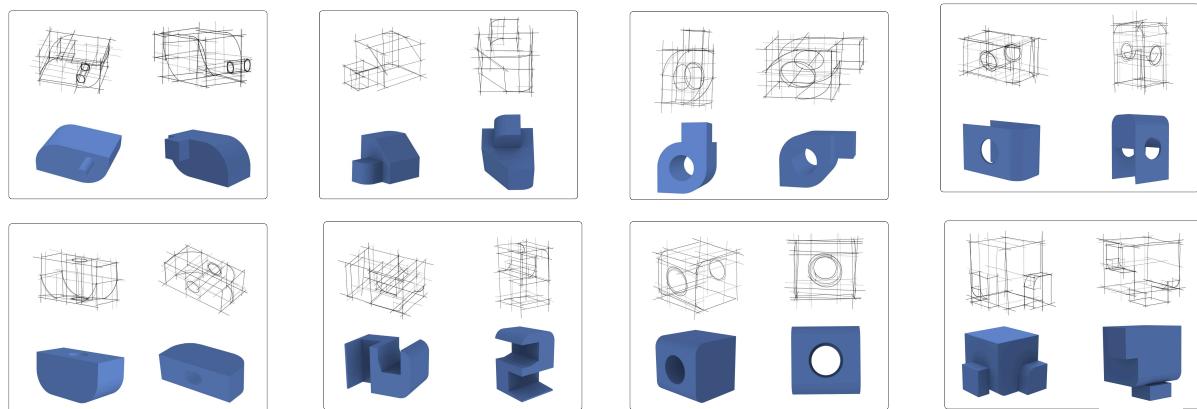


Figure 14: We show eight results of CAD program generation from Dataset A. Each box contains one result, with the shape shown from two different perspectives.

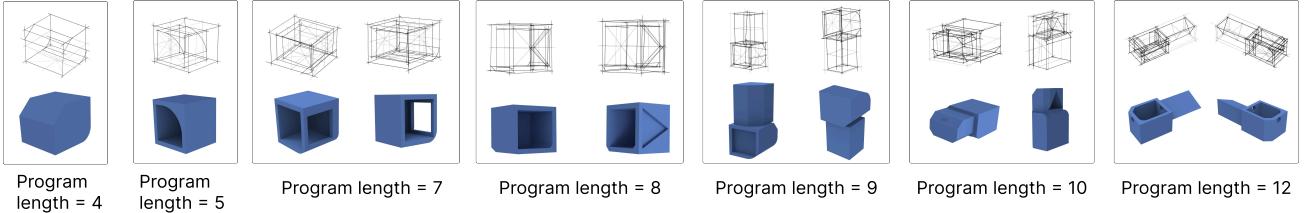


Figure 15: We present seven results of CAD program generation from Dataset B with varying program length. Each box contains one result, with the shape shown from one or two different perspectives.

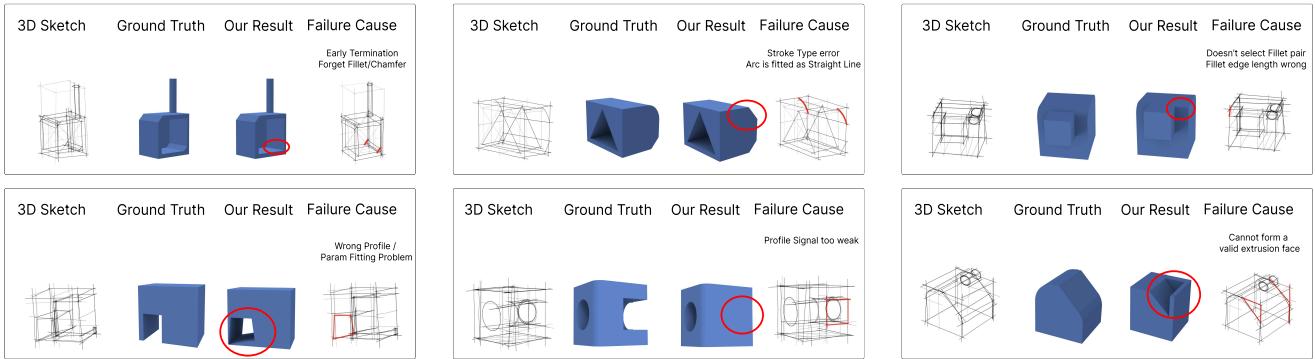


Figure 16: We present six failure cases. In each box, we show the input 3D sketch, the ground truth, our generated result, and the incorrectly selected strokes in the 3D sketch that led to the failure. Differences between our result and the ground truth are highlighted for clarity. The most common failures involve misclassification of small features such as fillets or chamfers, as seen in the first row.

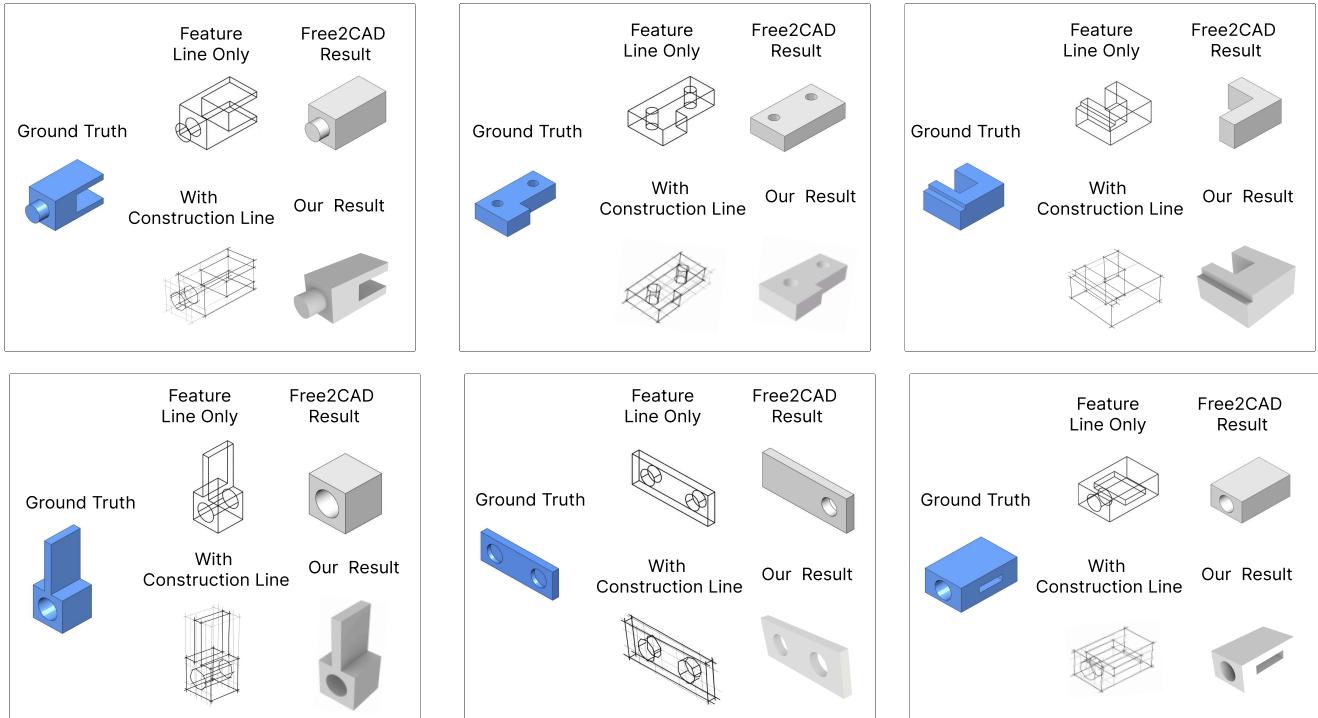


Figure 17: We present six examples from Free2CAD [LPBM22]. In each box, the top row shows the ground truth shape, the input sketch for Free2CAD, and the result generated by their method. The bottom row shows our redrawn sketch with construction lines and the corresponding result produced by our system. Original figures copied from Free2CAD.

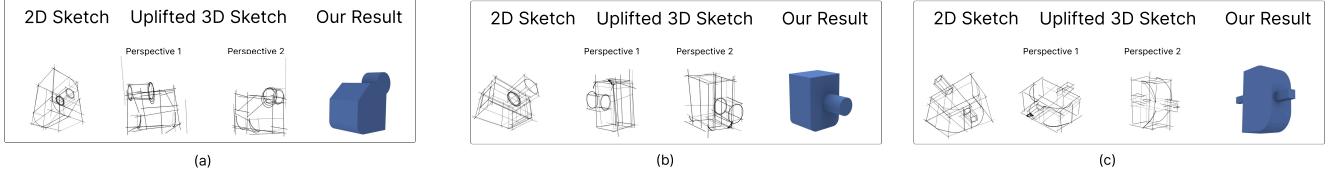


Figure 18: We selected 2D sketches from a previous work [HLM22], and then lift them back to 3D space using a previous method [HGSB22]. We show the resulting shapes. Although the lifting approach may introduce minor issues—as seen in (c), where the circle is distorted during the uplift process—our system can still make for valid interpretations based on the 3D sketch.

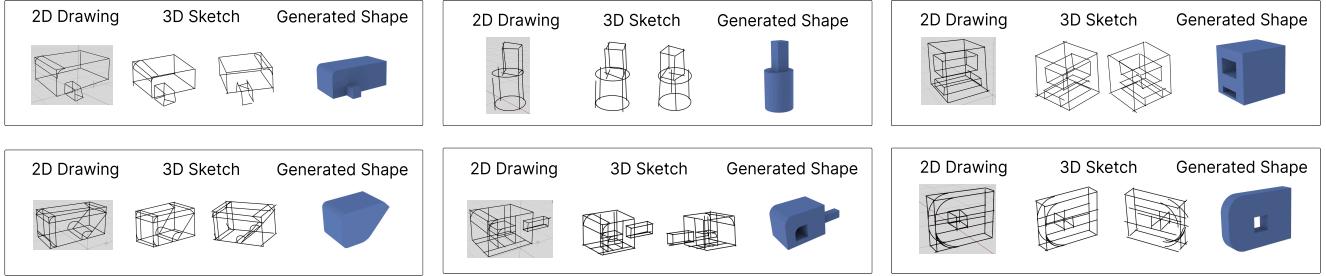


Figure 19: We invited three students with limited CAD design experience and one student proficient in CAD design to use our system. The first row presents results from a non-proficient student, while the second row shows the work of the proficient student designer.

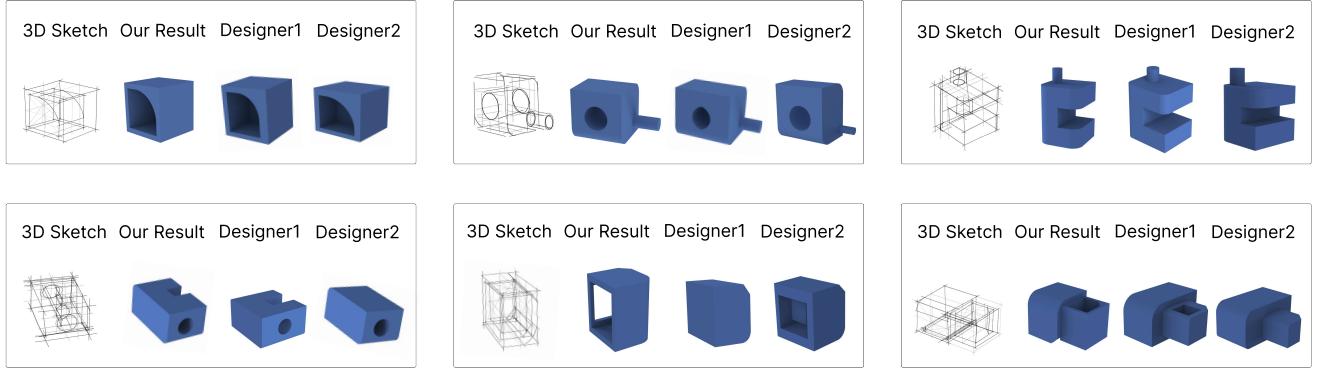


Figure 20: Comparison between reconstructions by student designers and our method. Each student was given six 3D sketches and asked to recreate the corresponding B-rep shapes. The designers performed well on simpler 3D sketches (first row), but encountered difficulties with more complex ones (second row), where many lines appear cluttered especially for 3D sketches with multiple subtractions. In contrast, our method can still handle these cases.

877 **Appendix A: Graph Node Feature Representation**

878 We show the details of our graph node features in Figure 21. Both
 879 stroke nodes and loop nodes contain 12 values.

880 For stroke nodes, the features include parametric information,
 881 opacity, circular attributes, stroke type encoding, and a binary label.
 882 There are five stroke types: straight lines, circular arcs, full circles,
 883 ellipses, and free-form curves, as shown in Table 5.

Table 5: Node features for stroke nodes. Each stroke node has 12 values, including parametric and semantic features.

Stroke Type	Parametric Function	Opacity	Circular Features	Stroke Type	Binary Label
Straight Line	Start and End points	Yes	/	1	0 or 1
Circular Arc	Start and End points	Yes	Center	2	0 or 1
Full Circle	Center and Normal	Yes	Radius + [0,0]	3	0 or 1
Ellipse	Center1 and Center2	Yes	Radius1, Radius2+ [0]	4	0 or 1
Free-form Curve	Start and End points	Yes	Sampled Point	5	0 or 1

884 For loop nodes, the first 11 values are padding, and the final value
 885 is a binary label indicating whether the loop is used. We do not as-
 886 sign additional features to loop nodes, as all necessary information
 887 can be derived from the strokes that form them.

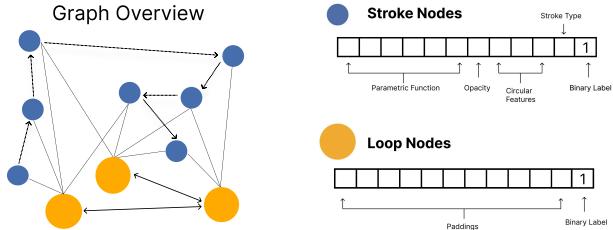


Figure 21: Overview of graph node features. We represent each stroke node using 12 values that include parametric geometry, opacity, circular characteristics, stroke type encoding, and a binary label. Loop nodes only contain a binary label in the final feature slot, with the remaining dimensions zero-padded.

888 **Appendix B: Graph Encoder Architecture**

889 We present our graph encoder in Figure 22. All tasks in our frame-
 890 work utilize this shared encoder to generate latent node embeddings
 891 for both stroke and loop nodes in the graph.

892 Each node in the input graph is initialized with a 12-dimensional
 893 feature vector. The output of the encoder is a 128-dimensional node
 894 embedding. The encoder first applies a graph convolutional layer
 895 to project the input features into a higher-dimensional space. This
 896 is followed by three residual blocks, each consisting of two graph
 897 convolutional layers with skip connections to preserve informa-
 898 tion flow. Finally, we apply another concluding graph convolutional
 899 layer is applied, followed by a ReLU activation to produce the final
 900 node embeddings.

901 **Appendix C: Parameter Extraction for CAD Operations**

902 Given the strokes (or loops) associated with each operation, we ex-
 903 tract the continuous values required to parameterize them:

904 **• Profile:** A loop node is selected. We first project all strokes in
 905 the loop onto the best-fitting plane. Then, we extract one unique
 906 point from each stroke, resulting in n points from n strokes. Two
 907 points are considered identical if they lie within a threshold dis-
 908 tance of $0.2 \times \max(\text{stroke_length}_1, \text{stroke_length}_2)$. These ex-
 909 tracted points are used to define a plane by fitting with least
 910 squares:

$$\min_{\mathbf{n}, d} \sum_{i=1}^n \left(\mathbf{n}^\top \mathbf{p}_i + d \right)^2 \quad \|\mathbf{n}\| = 1$$

911 where \mathbf{p}_i are the extracted points and \mathbf{n} is the plane normal.

912 **• Extrude:** A loop node is selected as the base face. The extrusion
 913 amount is computed as the Euclidean distance between the initial
 914 and final loop planes:

$$\theta_{\text{extrude}} = \|\mathbf{loop}_{\text{end}} - \mathbf{loop}_{\text{start}}\|.$$

915 **• Fillet:** The fillet radius is directly extracted from the selected arc
 916 stroke:

$$\theta_{\text{fillet}} = r_{\text{arc}}.$$

917 To identify the corresponding B-rep edge, we find the edge
 918 equidistant to the two endpoints of the fillet stroke.

919 **• Chamfer:** The chamfer amount is approximated using the length
 920 of the selected edge:

$$\theta_{\text{chamfer}} = \frac{\|\mathbf{p}_{\text{end}} - \mathbf{p}_{\text{start}}\|}{\sqrt{2}},$$

921 assuming a 45° chamfer angle. Similar to the fillet case, we lo-
 922 cate the target B-rep edge as the one equidistant from the end-
 923 points of the chamfer stroke.

924 **Appendix D: Dataset Preparation using Monte Carlo Tree Search**

925 To prepare the dataset for training our value function, we construct
 926 trees that explore all possible execution paths of the system. Since
 927 exhaustive enumeration is infeasible, we approximate this process
 928 using Monte Carlo Tree Search (MCTS), which prioritizes explo-
 929 ration along high-impact branches.

930 In our implementation, we first expand the tree until it reaches
 931 100 leaf nodes, regardless of tree depth. Among these, we select the
 932 top 20 leaf nodes with the highest probabilities, as they contribute
 933 most significantly to the overall value. For the remaining nodes, we
 934 perform four random executions to estimate their value. In contrast,
 935 the top 20 nodes undergo full tree expansion to more accurately
 936 evaluate their final result. This hierarchical search strategy reduces
 937 the total number of branches while retaining the fidelity of value
 938 estimation.

939 Empirically, we observe that programs with 8 operations typi-
 940 cally result in 300–500 tree states, while programs with 12 opera-
 941 tions yield approximately 1200–1800 states.

942 **Appendix E: Algorithm to Simulating Human Drawings**

943 We propose a novel method to perturb a clean 3D sketches in order
 944 to simulate human-like drawing variations (Figure 23). The input
 945 to our system is a set of polylines, each consisting of 10 sampled

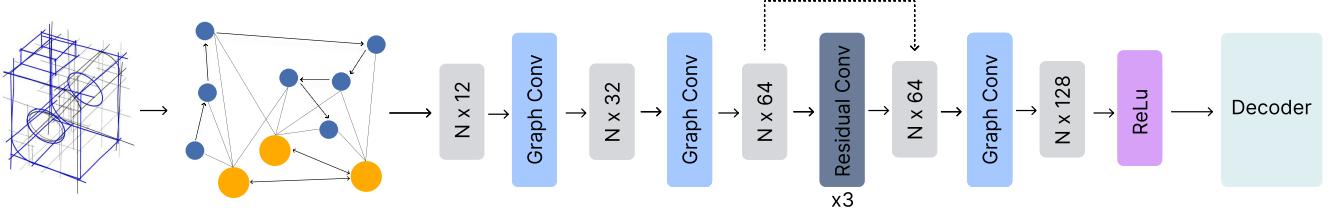


Figure 22: Overview of the graph encoder architecture. The input is a heterogeneous graph G_t , where stroke and loop nodes are initialized with 12-dimensional features. The encoder applies graph convolutions to expand features to 128 dimensions through stacked layers and residual blocks, followed by a ReLU activation before passing to the decoder for task-specific predictions.

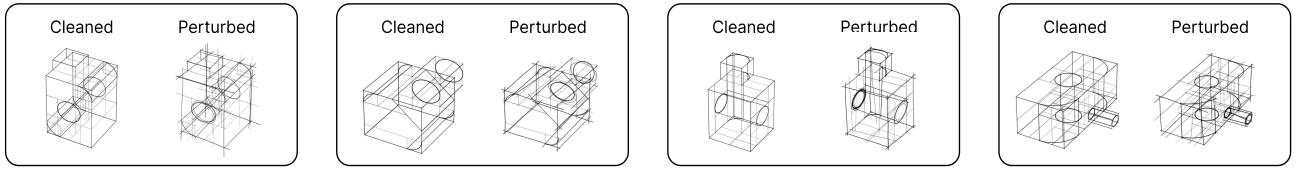
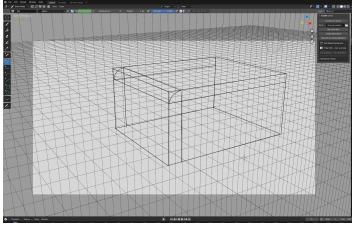
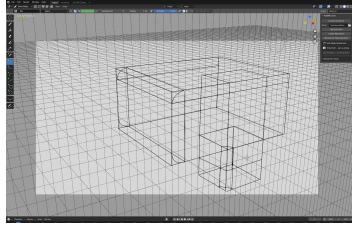


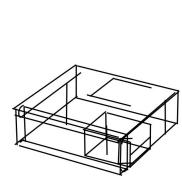
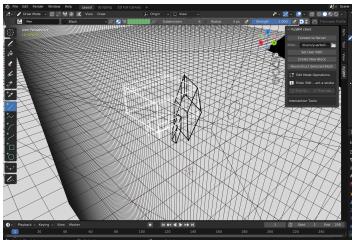
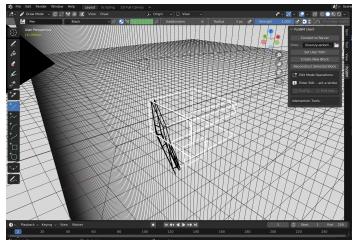
Figure 23: 3D Sketch perturbation to simulate human sketching. We show examples of clean and perturbed 3D Sketch. Perturbations are designed to emulate natural drawing variations such as jitter, overdrawing, stroke duplication, and deletion.

946 points. The output has the same structure but with added perturba- 947
948 tions.

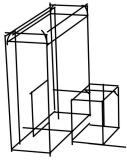
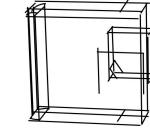
949 Our perturbation process consists of two main steps. First, we 950 perform stroke type fitting (as described in the graph construction 951 section) to identify the type of each stroke. Second, we apply dif- 952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
222100
222101
222102
222103
222104
222105
222106
222107
222108
222109
222110
222111
222112
222113
222114
222115
222116
222117
222118
222119
222120
222121
222122
222123
222124
222125
222126
222127
222128
222129
222130
222131
222132
222133
222134
222135
222136
222137
222138
222139
222140
222141
222142
222143
222144
222145
222146
222147
222148
222149
222150
222151
222152
222153
222154
222155
222156
222157
222158
222159
222160
222161
222162
222163
222164
222165
222166
222167
222168
222169
222170
222171
222172
222173
222174
222175
222176
222177
222178
222179
222180
222181
222182
222183
222184
222185
222186
222187
222188
222189
222190
222191
222192
222193
222194
222195
222196
222197
222198
222199
222200
222201
222202
222203
222204
222205
222206
222207
222208
222209
222210
222211
222212
222213
222214
222215
222216
222217
222218
222219
222220
222221
222222
222223
222224
222225
222226
222227
222228
222229
222230
222231
222232
222233
222234
222235
222236
222237
222238
222239
222240
222241
222242
222243
222244
222245
222246
222247
222248
222249
222250
222251
222252
222253
222254
222255
222256
222257
222258
222259
222260
222261
222262
222263
222264
222265
222266
222267
222268
222269
222270
222271
222272
222273
222274
222275
222276
222277
222278
222279
222280
222281
222282
222283
222284
222285
222286
222287
222288
222289
222290
222291
222292
222293
222294
222295
222296
222297
222298
222299
2222100
2222101
2222102
2222103
2222104
2222105
2222106
2222107
2222108
2222109
2222110
2222111
2222112
2222113
2222114
2222115
2222116
2222117
2222118
2222119
2222120
2222121
2222122
2222123
2222124
2222125
2222126
2222127
2222128
2222129
2222130
2222131
2222132
2222133
2222134
2222135
2222136
2222137
2222138
2222139
2222140
2222141
2222142
2222143
2222144
2222145
2222146
2222147
2222148
2222149
2222150
2222151
2222152
2222153
2222154
2222155
2222156
2222157
2222158
2222159
2222160
2222161
2222162
2222163
2222164
2222165
2222166
2222167
2222168
2



(a) 2D Drawing Process

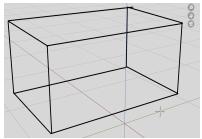
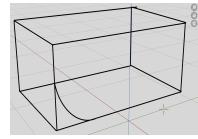
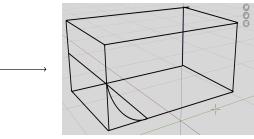
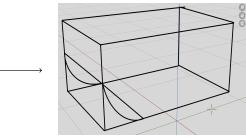


(b) Lifted Strokes in Blender UI

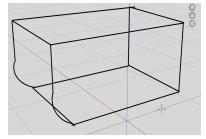


(c) 3D Sketch Generated

Figure 24: (a) illustrates the creation of a 2D sketch in Blender. (b) shows the corresponding lifted 3D sketch (in white) alongside the original 2D sketch (in black) within the user interface. (c) presents the final result of the lifted sketches in 3D space. Further details are provided in the original work [WB25].



(a) Our User's Drawing Process (with intermediate shapes)



(b) Sketch with only feature lines

Figure 25: We present an example of a participant's drawing in (a). The participant first sketched the entire cuboid, then added a curve to indicate the fillet operation. Then the user use projection lines to connect the edges of the cuboid. These project lines help the user to maintain alignment between the two fillet curves. In contrast, (b) shows the same shape drawn with only the feature lines, which is not how people typically sketch.

1004 cases was particularly challenging. While the use of construction
 1005 lines provided some assistance, the process as a whole remained
 1006 cumbersome.