
EUROGRAPHICS 2026 / B. Masia and J. Thies
(Guest Editors)

Volume 45 (2026), Number 2

CADrawer : Autoregressive CAD Generation from 3D Sketches

SUBMISSION ID : 1070

Extrude

(Surface, Amount)

Subtract

(Entity1, Entity2)

Add

(Entity1, Entity2)

Fillet

(Edge, Amount)

Profile

(Plane)

(a) Input 3D Sketch (b) Autoregressive generation (c) Output B-rep

Figure 1: Our system takes as input a 3D sketch, and autoregressively generates a CAD program that produces the intended shape.

Abstract
In professional design workflows, designers often begin by creating sketch drawings before converting them into CAD programs.
However, prior work on automatically interpreting these sketches has been limited to simplified inputs and fails to account for
construction lines that are ubiquitous in real-world drawings. We present CADrawer, a system that translates 3D sketches into
CAD programs using an autoregressive approach, leveraging construction lines as a rich source of information for recovering
intermediate CAD operations. At each step, CADrawer predicts the next modeling operation and its parameters based on a
graph-based representation of the sketch, which explicitly encodes spatial and temporal relationships between strokes. To im-
prove generation quality, the system maintains multiple candidate programs in parallel, and a learned value function evaluates
these partial programs to guide the search toward the most promising candidates. CADrawer is designed as a complement to
3D sketching interfaces, building on existing methods that creates 3D sketches. We evaluate our method across several datasets,
including those containing dense construction lines and cases without ground-truth B-rep shapes.

CCS Concepts
• Computing methodologies → Shape modeling;

1. Introduction1

Computer-Aided Design (CAD) is a widely adopted standard for2

creating 3D shapes across various industries. CAD models are typ-3

ically represented as programs consisting of a sequence of paramet-4

ric modeling operations, such as extruding a 2D profile to create a5

solid block or rounding an edge to create a fillet. The parameters6

of these operations offer precise control on the dimensions of the7

geometry produced when executing the programs.8

However, creating CAD models requires significant expertise in9

both planning the sequence of modeling operations and selecting10

them in feature-rich software interfaces. Meanwhile, sketching of-11

fers a quick and flexible way for designers to visualize the 3D12

shapes they have in mind, and to plan how to construct these shapes13

in CAD modeling. Prior research [LPBM20,HLMB22] and design14

educators [Hen12, Sto08] point to strong similarities between the15

steps designers follow when sketching 3D shapes, and the opera-16

tions they use to model in CAD software. In this paper, we present17

a method that exploits these similarities to translate industrial de-18

sign sketches into CAD programs.19

Prior works [LPBM22,LPBM20,SLX∗25] have introduced sys-20

tems that recognize CAD operations from sketches, but these meth-21

ods are restricted to sketches containing only feature lines, where22

each stroke directly corresponds to an edge of the final geometry23

submitted to EUROGRAPHICS 2026.

2 of 18 SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

(a) (b)

Figure 2: Examples of sketches that our system can process
(a), compared to the examples of sketches handled by previous
work [LPBM22, LPBM20, SLX∗25] (b)

(a)Target Shape

 Sketch

(b) Free2CAD

Result

(c) Ours

Result Sketch

Figure 3: We illustrate a case where Free2CAD [LPBM22] fails
to reconstruct the target shape (a) when relying solely on the fea-
ture lines shown in (b). Since the strokes corresponding to the sub-
traction operation are absent, the method cannot recover the cor-
rect modeling process. In contrast, sketching the same shape with
construction lines provide additional information about intermedi-
ate structures (c), which our method exploits to successfully recon-
struct the intended shape.

(Figure 2). Relying solely on feature lines makes it difficult to re-24

cover complex sequences of additive and subtractive operations,25

since multiple edits can occur within the same spatial region and26

the resulting lines may not appear in the finished shape. In con-27

trast, real-world sketches often include construction lines — auxil-28

iary strokes that designers use to outline primary object parts with29

simple primitives (e.g., cuboids, cylinders) before refining details30

[GSH∗19]. Such lines frequently represent intermediate shapes in31

the design process or help establish perspective. While construction32

lines do not appear in the final geometry, many reveal crucial infor-33

mation about the process creating the final shape. Figure 3 gives a34

typical example of a shape that previous method [LPBM22] fails35

to recover using only feature lines.36

The main challenge arises from the fact that construction lines37

often outnumber feature lines, leading to visual clutter without a38

direct correspondence to the final shape. As the number of strokes39

grows, the number of possible loops formed by construction lines40

also increases, as shown in Figure 4. In addition, designers may41

omit or repeat strokes, which further increases ambiguity in real-42

world sketches. The problem we address is to infer CAD opera-43

tions and their parameters from such noisy and cluttered sketches.44

Our system operates on 3D sketches, as intersections and planar cy-45

cles are more easily detected in 3D than in 2D. These 3D sketches46

are becoming increasingly accessible through sketch-based mod-47

eling interfaces [SKSK09, WB25], sketch reconstruction methods48

[GHL∗20, HGSB22], and VR interfaces [YDSG21]. We demon-49

strate our approach on 3D sketches that we have created using an50

existing drawing interface and accompanying reconstruction algo-51

rithm [WB25,HGSB22], even though our algorithm could apply to52

other sources of 3D sketches.53

Our key observation is that the geometric relationships between54

the strokes convey rich information about the underlying 3D struc-55

Figure 4: Construction lines can form multiple loops on the same
surface, increasing ambiguity and complexity in sketch interpreta-
tion.

ture. In contrast to prior work that relies on Transformer-based56

models to discover stroke interactions [LPBM22], we explicitly57

encode geometric relationships in a graph where nodes represent58

sketch entities and edges encode spatial and temporal ordering59

between these entities. This custom representation allows us to60

adopt a lightweight graph neural network for analyzing the sketch61

and predicting the CAD operations. Furthermore, we augment the62

graph with information from the generated geometry, which pro-63

vides both spatial and programmatic context.64

We adopt an autoregressive approach that predicts a single oper-65

ation and its corresponding parameters at each step. This sequential66

formulation allows the model to postpone uncertain decisions and67

use the progressively built shape to guide more informed and im-68

mediate predictions. However, like previous methods, this approach69

is prone to error accumulation. We maintain a set of candidate pro-70

grams in parallel and apply Sequential Monte Carlo (SMC) to re-71

sample the best candidates. We use a learned value function that72

evaluates each partial program and concentrates computational re-73

sources on the most promising ones during the SMC process.74

In summary, our system is the first to tackle the challenge of in-75

terpreting sketches that include both feature and construction lines.76

It takes as input 3D sketches and autoregressively generates CAD77

programs that can be executed to produce shapes aligned with the78

input. We evaluate our system on both synthetic and hand-drawn79

sketches spanning a range of complexities. We will release our code80

upon acceptance.81

Our main contributions are:82

• An autoregressive framework for translating 3D sketches into83

CAD programs.84

• A graph-based representation of 3D sketches that captures geo-85

metric relationships between sketch entities.86

• A learned value function that evaluates CAD programs by esti-87

mating their potential to reproduce the depicted shape.88

2. Related Works89

Our work builds on two complementary streams of research —90

sketch-based modeling and CAD program synthesis. We refer to91

recent surveys for extensive discussions of these two domains92

[LB25, RGJ∗23].93

submitted to EUROGRAPHICS 2026.

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches 3 of 18

(d) Policy Module

(c) Build Graph

(b) Sampling

Stroke
Selection

B-rep

Mark-off

X

CAD 
Program

Profile

(Plane)

(e) Execution

(a) Input

3D Sketch

......
......

......

......

......
......

(f) Value Network

R
esam

p
le

S
elect R

esult

(g) CAD Program

(h) Output B-rep

Termination

Figure 5: Our system takes as input (a) a 3D sketch and performs autoregressive generation to produce (g) a CAD program, and (h) the
resulting B-rep shape by executing the program. We create multiple samples that run in parallel, which are resampled after each step to
maintain diversity and guide the generation progress. At each autoregressive step, we first build a graph (c) representing the current state
of the reconstruction (Section 4), and then the policy module (d) predicts a CAD operation and identifies the strokes used to derive its
parameters (Section 5). The current program is then executed and compared with the input 3D sketch to mark off the strokes that are already
represented in the current program (e). This feedback is used as input for the next step. After each step, the value function (f) estimates the
likelihood of success for the current program state, allowing us to focus the search on more promising samples (Section 6).

Sketch-based modeling. The field of sketch-based modeling has94

matured to offer a broad range of interactive and automatic ap-95

proaches to create 3D shapes from 2D drawings. Optimization-96

based algorithms tackle this challenge by imposing geometric97

constraints between lines, such as parallelism and orthogonality98

[LS96], planarity [LCLT08,YLT13], symmetry [CSMS13,PCV16].99

While early methods were limited to polyhedral shapes and clean100

drawings, later algorithms have been extended to curved objects101

[XCS∗14, SKSK09], and sketches with oversketching and con-102

struction lines [GHL∗20,HGSB22]. Building on this body of work,103

we assume that our input is a 3D sketch created with these meth-104

ods. Taking 3D sketches as input facilitates the detection of sketch105

entities and their spatial relationships, allowing us to focus on rec-106

ognizing CAD operations from such entities.107

We contribute to the family of works that recognize para-108

metric shapes from sketches [HKYM16, NGDGA∗16, LPBM20,109

LPBM22, PMKB23, SLX∗25]. In particular, our method is clos-110

est to Free2CAD [LPBM22] that autoregressively identifies groups111

of strokes that depict CAD operations and derive their parameters.112

However, both works are limited to simple, clean contour draw-113

ings that only contain feature lines that appear in the final shape. In114

contrast, the design sketches we target contain construction lines,115

which provide additional information about intermediate CAD op-116

erations, but also make the identification process more challenging.117

Learning to Recover CAD Programs Our work also relates to118

the more general goal of reverse engineering CAD models from di-119

verse input, such as voxel grids [SGL∗18,TLS∗19,LWJ∗22], point120

clouds [WXW18, DIP∗18, WXZ21, LOWS23, GLP∗22, SLK∗20,121

RDM∗24], boundary representations [XPC∗21] or others [CF25,122

WZW∗24]. Working on sketches gives us a unique advantage, as123

the drawing sequence we take as input not only depicts the final124

shape envisioned by the designer, it also describes how the de-125

signer plans to construct it. This additional information helps recov-126

ering the ordering of CAD operations, as observed by prior work127

on sketch-based modeling [LPBM20, LPBM22].128

Inspired by prior on deep learning for CAD, we propose to rep-129

resent 3D sketches with a graph structure that encodes stroke or-130

dering, stroke intersections, and stroke loops. This choice aligns131

with the inherent nature of CAD boundary representations (B-reps),132

where graphs naturally capture the relationships between faces,133

edges, and vertices. Many previous works have proposed their own134

graph representations tailored to the specific needs of their tasks135

[XPC∗21, CRN∗22, WJC∗22, JHC∗21, JNK∗23]. Our representa-136

tion jointly encodes the 3D sketch and the B-rep generated by ex-137

ecuting the CAD program, which enables effective mapping be-138

tween our input and output while providing spatial context for pro-139

gram generation.140

Our approach also builds on ideas from previous works in pro-141

gram synthesis [ENP∗19, ERSLT18, CLS19, TLS∗19, KMP∗18]142

that incorporate execution-based feedback into autoregressive gen-143

eration. Specifically, we adopt an autoregressive approach to cap-144

ture the sequential nature of CAD programs, where later operations145

often depend on geometry generated in earlier steps. We extend this146

paradigm by executing the partial program at each step, comparing147

the resulting B-rep with the input 3D sketch, and using spatial feed-148

back to guide the next prediction. This execution-feedback loop149

enables the system to remain aware of construction progress and150

avoid redundant operations.151

3. Approach152

Our system takes as input a 3D sketch—a set of 3D polylines, each153

represented by 10 sampled points—and outputs a CAD program154

that generates the intended 3D shape. We adopt an autoregressive155

generation process that adds one CAD operation token and its cor-156

responding parameters at each step. Each autoregressive step con-157

sists of three actions. First, the system constructs a graph repre-158

senting the current generation state (Section 4). Next, the policy159

submitted to EUROGRAPHICS 2026.

4 of 18 SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

module predicts the next CAD operation and selects the relevant160

subset of strokes or loops to determine its parameters (Section 5).161

Then, the system executes the current program to produce an up-162

dated B-rep and compares it against the input 3D sketch to identify163

which strokes have been explained.164

We maintain multiple program samples in parallel. After each165

step, once all samples have finished execution, a learned value func-166

tion evaluates their current states, and a resampling step reallocates167

computational resources to the most promising samples (Section 6).168

Profile

(Plane)

Extrude

(Surface, Amount)

Fillet

(Edge, Amount)

Chamfer

(Edge, Amount)

Add

(Entity1, Entity2)

Subtract

(Entity1, Entity2)

Figure 6: Our system supports six operations: profile, ex-
trude, fillet, chamfer, add, and subtract.

Similar to previous sketch-to-CAD works [LPBM20, LPBM22,169

SLX∗25] and many other CAD research efforts, our system sup-170

ports four fundamental CAD operations: profile, extrude,171

fillet, and chamfer (Figure 6). Boolean operations emerge172

from the extrude direction. Extruding outward add material, while173

extruding inward subtract material.174

4. Graph Representation175

At each autoregressive step t, we construct a heterogeneous graph176

Gt = (V,E) that encodes the spatial relationships between strokes,177

their sequential order, and the current state of the CAD program178

(Figure 7a,b). To capture the program state, we execute the partially179

generated CAD program to produce a B-rep and compare it against180

the input 3D sketch to identify which strokes have already been181

explained (Figure 7c). This comparison provides spatial grounding,182

as it is difficult for neural networks to perform spatial reasoning183

solely from symbolic program tokens. The resulting unified graph184

is in one-to-one correspondence with the evolving CAD program,185

ensuring that each program state has a unique graph representation.186

This graph serves as input to both the policy module and the value187

network, providing information from both the sketch and the CAD188

program.189

Prior work such as [YZF∗21] represents sketches as graphs190

where nodes correspond to sampled points and edges to stroke191

segments. However, this approach captures only local geome-192

try and struggles with more complex sketch structures. In con-193

trast, Free2CAD [LPBM22] models sketches as sequences us-194

ing a Transformer-based architecture to capture temporal order of195

strokes, but neglects spatial relationships and incurs substantial196

computational costs (9 days of training reported). Concurrently to197

our work, Sketch2Seq [SLX∗25] is based on a graph structure that198

encodes strokes as nodes and local and distant spatial relationships199

as edges, but it ignores stroke ordering and larger entities such as200

loops formed by successive strokes.201

Our method combines the strengths of these approaches: we en-202

code both sequential and spatial relationships in a unified graph203

structure using heterogeneous edge types. This allows for efficient204

processing with a lightweight graph neural network that can be205

trained within a few hours. Furthermore, our graph includes two206

types of nodes: stroke nodes and loop nodes. Loop nodes repre-207

sent coplanar, closed groups of strokes that typically define profile208

regions for planar operations. These nodes ensure that the profile209

detection module can consistently identify closed, complete sketch210

planes. Another challenge is the ambiguity of stroke roles, where211

the purpose of a stroke may only become clear after earlier parts of212

the sketch are interpreted. Our graph representation addresses this213

by allowing each stroke to reason about its spatial and temporal214

neighbors and the usage status of those neighbors.215

(a) Graph Overview (b) Zoomed-in Graph Structure

B-rep Trajectory

Compare

3D Sketch B-rep Features Mark Off

Output

(c) Process of Marking off Strokes

NOT used Stroke

Used Stroke

Used Loop 1

...

...

...
1

...

0

...

Loop Node

Stroke Node
Stroke Node

Stroke Node

Stroke Node

Figure 7: An overview of the graph (a), and a zoomed-in view
(b). Panel (c) shows the process of marking off strokes. We exe-
cute the CAD program incrementally to produce all intermediate
shapes generated throughout the process. This is because certain
edge features, especially those involved in subtracts, may not
appear in the final shape. The resulting mark-off (in blue) indicates
which strokes have been explained by the current program.

4.1. Graph Nodes216

The input 3D sketch is represented as a set of polylines, with each217

polyline sampled at 10 points. For each stroke, we fit a parametric218

function based on its geometry, including: straight lines, circular219

arcs, full circles, ellipses, and free-form curves. Each stroke node220

in our graph encodes the corresponding parametric function, the221

stroke’s opacity, its type, and a binary label indicating whether it is222

used in the final B-rep. In contrast, each loop node contains only a223

binary indicator for B-rep usage. We provide additional details on224

the node feature representations in Appendix A.225

4.2. Graph Edges226

The graph edges capture both the spatial relationships between227

nodes and the temporal order of stroke execution. Stroke-order228

edges are defined directly from the sequence in which strokes are229

drawn, while all other edges are derived purely from geometric re-230

lations. To assess the contribution of each edge type, we perform an231

ablation study in Section 8.5. The edge categories are as follows:232

• Stroke-to-Stroke Edges: Capture intersection between strokes233

in the 3D sketch.234

submitted to EUROGRAPHICS 2026.

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches 5 of 18

• Loop-to-Loop Edges: Capture intersection, containment (which235

loop contains which), and perpendicular relationships between236

loops.237

• Stroke-to-Loop Edges: Indicate which strokes constitute a par-238

ticular loop.239

• Stroke-order Edges: Capture the order in which strokes were240

drawn.241

5. Policy Module242

Our system autoregressively generates a CAD program P =243

{pt}T
t=1, where each pt = (ot ,θt) denotes a CAD operation ot and244

its associated parameters θt . At each timestep t, the policy mod-245

ule takes as input the graph constructed in Section 4 and performs246

three tasks: (1) predicting the next CAD operation ot (Section 5.2);247

(2) selecting the relevant strokes from S (Section 5.2); and (3) in-248

ferring the operation parameters θt based on the selected strokes249

(Section 5.3).250

5.1. Graph Encoder251

We use a shared Graph Convolutional Network (GCN) encoder to252

compute node embeddings from the input graph Gt . These embed-253

dings are then fed into task-specific decoders for different tasks. We254

provide detailed architecture of the network in Appendix B.255

5.2. Task-Specific Decoders256

We design different decoders tailored to different tasks, each fol-257

lowing a specific pipeline (see Figure 8), and train them separately.258

5.2.1. (a) Operation prediction.259

To predict the next CAD operation token, we perform cross-260

attention between the program embedding (as query) and the graph261

embeddings (as key and value), thereby annotating the program262

with geometric context. We then apply self-attention over the an-263

notated program embedding (the [CLS] token) to aggregate infor-264

mation and produce the next program token:265

Lop =−
|O|

∑
i=1

yi log ŷop,i. (1)

Our loss function is the standard cross-entropy loss, which penal-266

izes the model when it assigns low probability to the correct oper-267

ation token.268

5.2.2. (b–d) Stroke (or Loop) Feature Selection.269

For operations that require geometric input, such as selecting a270

loop for Profile, strokes for Extrusion, or strokes for Fil-271

let/Chamfer, we perform binary classification over the relevant272

nodes. For each node v, we compute a selection probability by min-273

imizing the following focal loss:274

Lstroke =−
|S|

∑
i=1

αi(1− ŷstroke,i)
γyi log ŷstroke,i, (2)

where yi ∈ {0,1} indicates whether node i is selected, αi = 1.0,275

and γ = 1.5. The focal loss [LGG∗17] mitigates class imbalance276

by down-weighting easy negatives, which is important for our case277

since only a small fraction of nodes are typically selected at each278

step.279

The loss function in Eq. (2) serves as the common objective for280

all geometric selection tasks. The specific pipeline for construct-281

ing the candidate set of graph nodes, however, differs by task, as282

described below:283

• Profile selection (b): An MLP is applied to the loop embed-284

dings, followed by binary classification. The loop with the high-285

est probability is selected.286

• Extrusion (c): During graph construction, sketch strokes corre-287

sponding to previously used sketch operations are masked, so288

the graph encodes which strokes are already chosen. The en-289

coder produces graph embeddings, and an MLP predicts which290

strokes are used for extrusion. A new graph is then built with291

these strokes masked, re-encoded, and the decoder selects the292

face created by the extrusion.293

• Fillet and chamfer selection (d): An MLP is applied directly294

to the stroke embeddings, followed by binary classification. The295

contributing strokes are then selected.296

5.2.3. (e) Value network.297

After generating graph embeddings, we compute cross-attention298

between the graph embeddings and their mean-pooled representa-299

tion. This enables the network to capture both global and local fea-300

tures of the graph. The resulting representation is passed through301

an MLP to regress to a single scalar value.302

5.3. Finding Operation Parameters303

Given the strokes (or loops) selected for each operation, we ex-304

tract continuous values required to execute that operation. A major305

challenge is that the input strokes are sketches that are inherently306

imprecise, making it difficult to recover exact parameter values di-307

rectly. To address this, we employ a set of geometric algorithms to308

infer the parameters, as detailed in Appendix C.309

6. SMC Based Program Sampling310

Performing the entire autoregressive generation process in a sin-311

gle shot is challenging. First, errors can accumulate across steps,312

compounding over time. Second, 3D sketches are often ambigu-313

ous so that multiple valid interpretations may exist, and later deci-314

sions may depend on earlier ones. To capture this uncertainty and315

maintain a diverse set of plausible solutions, we adopt a Sequen-316

tial Monte Carlo (SMC) framework that maintains a set of samples317

CAD programs, referred to as particles.318

All particles are initialized from the same state: the empty pro-319

gram. At each timestep t, each particle samples its next step from320

the policy module, which involves predicting the next operation to-321

ken and selecting the corresponding strokes. This procedure defines322

the prior distribution:323

p
(

x(i)0:t

)
=

t

∏
k=1

p
(

x(i)k | x(i)0:k−1

)
,

where x(i)k denotes the program step chosen at time k by particle i.324

submitted to EUROGRAPHICS 2026.

6 of 18 SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

Existing

Program

Stroke + Loop

Node Embedding

Graph Encoder
Graph Encoder

Graph Encoder

Loop Node

Embedding

Cross Attention

Linear

MLP

MLP

Next Operation

(a) Operation Prediction (b) Profile Selection

(c) Extrude Face Selection

Sketch mask

Selected
Loop

Extrude mask Extrude Face
MLP

Stroke Node

Embedding

Loop Node

Embedding

MLP

CLS Token

Self Attention

+

Stroke + Loop

Node Embedding

Graph Encoder

Cross Attention

Mean Pooling

MLP

(e) Value Network

Graph Encoder

Stroke Node

Embedding

MLP

(d) Fillet / Chamfer Selection

Global

Representation

Graph Value

Selected
Strokes

Figure 8: Overview of the decoder architecture. Each submodule is responsible for a specific task: (a) operation prediction, (b) profile
selection, (c) extrude face selection, (d) fillet/chamfer selection, and (e) value network.

SMC then approximates the posterior distribution p(x0:t | y),325

where y is input graph Gt . As directly computing this posterior is326

intractable, SMC resamples the particles based on a learned value327

function V (x0:t) (Section 6.1). This resampling helps recover from328

early mistakes and maintain diversity among plausible particles ,329

which is particularly important for complicated sketches. In Fig-330

ure 9 we show an example of this process.331

Profile

(+Extrude) 0.62

0.83

0.41 x

0.41

Profile

(+Extrude)

Fillet

Fillet

(a) Particles (b) Policy Module (c) Resampling
V

alue N
etw

ork

Figure 9: We present an example of resampling using SMC. Af-
ter all particles pass through the policy module, the value network
assigns each of them a score. The SMC then resamples based on
these scores, shifting the distribution toward particles with higher
likelihood.

6.1. Value Function332

We need a scoring function that evaluates how well a candidate333

CAD program matches the target sketch. Since different execution334

orders of CAD operations can produce the same final B-rep, this335

value function must be order-invariant.336

Previous works on CAD generation often evaluate their re-337

sults by computing the Chamfer Distance between the gener-338

ated B-rep and inputs such as voxels [UyCS∗22, KSA23], point339

clouds [GLP∗22, ZHFL23, LCP∗24], or meshes [GXL13]. In con-340

trast, directly comparing our generated B-rep with the input 3D341

sketch is not meaningful. Such a comparison only reveals which342

strokes have been explained by the program. But many construc-343

tion lines are not intended to appear in the final shape, and the input344

sketch itself is sparse.345

Instead, we evaluate the generation process by computing the346

Chamfer distance between the generated B-rep and the ground-347

truth B-rep. However, during inference, the ground-truth shape is348

not available, making direct computation infeasible. To address349

this, we train a neural network that takes the current graph Gt as350

input and learns to predict a proxy for the Chamfer distance. This351

learned value function enables geometry-aware scoring of partial352

CAD programs without the ground truth during generation.353

6.1.1. Immediate Value Estimation354

A straightforward approach is to train our neural network to predict355

the Chamfer distance S f of the current B-rep. However, as Cham-356

fer distance is correlated with the volume of the shapes, operations357

that create larger volumes (e.g., extrude, which produces a solid358

block) might have greater impacts on the Chamfer distance than op-359

erations that modify smaller features (e.g., fillet, which rounds360

edges). In our experiments, we observe that the SMC sampling pro-361

cess with this immediate value estimation tend to favor samples that362

prioritized extrude operations, leading to a greedy search behav-363

ior.364

6.1.2. Expected Value Estimation365

A more principled way to evaluate a partial CAD program is by366

estimating the quality of its expected final output. Inspired by prior367

works such as AlphaGo [SHM∗16,SSS∗17], we construct a search368

tree that explores possible future executions from the current pro-369

gram state (Figure 10). The value of a partial program is then370

computed by aggregating the values of all possible completions,371

weighted by their probabilities. We define the value of a state s as:372

V (s) = ∑
a∈A

P(a|s)V (s′)

where:373

• V (s) is the value of the current state.374

submitted to EUROGRAPHICS 2026.

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches 7 of 18

Subtract
Empty Program

Add

Stroke
Selection

Execution Value

Termination

......

......

......
......

......

......

......

Fillet

Prob: 0.6

Prob: 0.5

Prob: 0.3

Prob: 0.7

Prob: 0.35

Prob: 0.15

Prob: 0.08

Prob: 0.62

Prob: 0.3

Prob: 0.25Prob: 0.4

Fillet

Termination

Compute

Chamfer Distance

Compute

Chamfer Distance

......
......

......

......

......

......

Figure 10: We build a tree from a a partial CAD program by simulating future actions. Each branch represents a possible choice by the
policy module. Non-terminal states’ values are based on their child nodes weighted by probabilities. Terminated states are evaluated using
Chamfer distance to the ground truth shape.

• A is the set of possible operations from s.375

• P(a|s) is the probability of writing program a from state s.376

• s′ is the next state obtained by applying a to s.377

• V (s′) is the value of the next state, or the Chamfer distance if it378

is an termination state.379

However, constructing a complete tree that explores all possible380

executions of the system is computationally infeasible. We approx-381

imate this process using Monte Carlo Tree Search (MCTS), which382

focuses exploration on high-impact branches. Implementation de-383

tails of our MCTS algorithm are provided in Appendix D.384

To train the value network, we use the search trees generated by385

our MCTS procedure to construct a dataset that provides estimated386

values for program states at various stages of execution. We adopt387

the same graph encoder (detailed in Appendix B) to produce node388

embeddings, then passed through a value decoder (Figure 8) to pre-389

dict a scalar value representing the estimated quality of the current390

state. We train the value network using a contrastive loss that en-391

courages higher scores for better programs:392

Lvalue = max(0,m− y · (S1 −S2)),

where S1 and S2 are the predicted scores, y ∈ {1,−1} indicates393

which program is better, and m = 0.2 is the margin.394

7. Implementation395

7.1. Dataset396

We develop a novel method to generate noisy synthetic 3D sketches397

that imitate human sketches (detailed in Appendix E) and prepare398

two datasets using it. The first dataset (Figure 12 and Figure 14),399

introduced by [HLMB22], consists of 1361 CAD program and 3D400

sketch pairs and includes profile, extrude, and fillet op-401

erations. Each program contains exactly 8 operations, and the re-402

sulting sketches have an average of 78.6 strokes, with a minimum403

of 35 and a maximum of 143 strokes. To increase diversity and404

complexity, we procedurally generate a second dataset comprising405

4000 CAD program and 3D sketch pairs (Figure 13 and Figure 15),406

covering all four basic operations: profile, extrude, fil-407

let, and chamfer. Program lengths range from 3 to 15 opera-408

tions, with an average of 9.2. The resulting sketches vary from 17409

strokes at the simplest end to 307 strokes at the most complex, with410

an average of 122.3 strokes.411

Both datasets are divided into 80% for training and 20% for val-412

idation. They feature diverse designs (exampled in Figure 14, 15)413

and differs in program length, program patterns, spatial relation-414

ships between strokes, as well as in how feature lines and con-415

struction lines are drawn. We train on these datasets jointly to high-416

light generality. In Section 8, we present results from training both417

separately and jointly (by randomly merging them into a single418

combined dataset), demonstrating our system’s ability to generalize419

across a wide range of sketching styles.420

7.2. Network Training and Inference421

We implement our neural networks in PyTorch Geometric and will422

release the code upon acceptance. Training is performed on an423

NVIDIA GeForce RTX 4090 GPU: policy networks train in ∼2424

hours, and the value network in ∼10 hours. At inference time, our425

system generates a CAD program (9 operations) in ∼30 seconds426

using 30 parallel particles in the SMC framework.427

8. Results and Evaluation428

8.1. Baseline Method : Order Based Reconstruction429

We implemented a baseline algorithm that processes strokes in the430

order they were drawn. In this approach, strokes are sequentially431

added, and whenever they form a closed loop, the algorithm groups432

them into a sketch loop. When such loops correspond to higher-433

level entities (e.g., a cuboid), the algorithm generates the corre-434

sponding sketch and extrude operations to construct the intended435

geometry.436

However, this approach faces two major challenges. First, artists437

often draw in inconsistent order, sometimes revisiting earlier parts438

of the sketch. Second, sketches frequently include construction439

lines, which can form loops with feature lines. This algorithm often440

mistakenly interpret these as valid sketches, resulting in errors. To441

evaluate this method, we selected 100 short programs from Dataset442

B (each containing only six operations). The baseline succeeded in443

submitted to EUROGRAPHICS 2026.

8 of 18 SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

generating only 1 out of 100 shapes, clearly illustrating its limita-444

tions.445

8.2. Baseline Method : Stroke Filtering as Preprocessing446

Another baseline method we consider is a two-stage pipeline. The447

first stage selects strokes that either appear in the final shape or in448

intermediate shapes, since these strokes can help generate the entire449

CAD generation process. Such strokes include both feature lines450

and a subset of construction lines. Our objective is to use only these451

selected strokes to predict the CAD program, thereby reducing the452

burden on the network. Specifically, we train a network to perform453

binary classification of strokes, separating those that are ever used454

in the shape’s generation history (i.e present in intermediate shapes455

or the final shape) from those that are not (i.e. construction lines456

used solely for perspective correction). This classifier adopts the457

same graph encoder as our main pipeline to compute node embed-458

dings, followed by a multilayer perceptron (MLP) that operates on459

the stroke nodes.460

We evaluated this approach on 500 shapes sampled from461

Dataset B. The preprocessing network achieved an accuracy of462

86.2% in distinguishing between the two categories of lines. How-463

ever, only 173/500 examples retained all the lines required to fully464

generate the program. For the remaining 327/500 examples, recov-465

ering the correct program was difficult regardless of the generation466

algorithm. This stroke pre-processing does not work well because467

it is inherently challenging to determine which construction lines468

are essential for the generation process in a single-shot prediction.469

In contrast, our method (proposed in this work) addresses this chal-470

lenge through an autoregressive formulation, where later predic-471

tions can build on earlier ones, making it easier to capture the nec-472

essary lines for program recovery. We provide example results of473

predicting lines that are used in the shape’s generation history in474

Figure 11.475

8.3. Overall Performance476

We train our network on the two datasets both separately and477

jointly. Joint training on Dataset A and Dataset B enables broader478

generalization, but it also introduces challenges due to stylistic in-479

consistencies between the datasets. For example, Dataset B often480

uses diagonal lines to denote profile planes, whereas Dataset A481

does not (Figure 14, Figure 15). Such differences can confuse the482

network, since identical operations are represented with different483

visual cues. Nevertheless, our system remains capable of making484

valid predictions by reasoning about underlying spatial relation-485

ships rather than relying solely on dataset-specific patterns. This486

indicates that the model learns to infer higher-level geometric in-487

tent, contributing to its robustness.488

To assess shape quality, we compute the Chamfer distance be-489

tween the generated shape and the ground-truth shape in the vali-490

dation set, using 300 uniformly sampled surface points. A gener-491

ation is considered successful if the Chamfer distance is less than492

1% of the bounding box diagonal of the ground truth shape. We493

also present several failure cases and their underlying causes in Fig-494

ure 16.495

We observe that the value function often struggles to distinguish496

Table 1: Top-3 results success rate (%) with different sampling
methods.

Value Function Dataset
A

Dataset
B

Joint
(A +
B)

No Sampling / No Value Function 59.0% 67.0% 48.0%
Immediate Value Function 82.0% 89.0% 80.0%
MCTS based Value Function 82.0% 91.0% 82.5%

Table 2: Accuracy (%) for operation prediction and corresponding
strokes (or loops) selection across different dataset setups.

Task Type Dataset A Dataset B Joint (A +
B)

Profile 88.7% 94.2% 82.2%
Extrude 94.2% 97.4% 93.3%
Fillet 89.6% 99.6% 94.5%
Chamfer / 82.7% /
Next Operation 99.7% 89.9% 92.1%

fine-grained shape differences, particularly those involving small497

features such as fillet or chamfer operations. To mitigate this498

limitation, our system returns the top-3 predicted shapes, ranked by499

the value function, and allows users to select their preferred result.500

In Table 1, we compare the effectiveness of three sampling501

strategies: (1) a baseline without resampling, (2) SMC sampling502

with resampling based on an immediate value function (Section503

6.1.1), and (3) SMC sampling guided by a value function trained to504

estimate the expected final outcome (Section 6.1.2).505

The value function trained on expected final values does not506

provide any improvement over the immediate value function on507

Dataset A, whereas it shows a more noticeable benefit on Dataset B.508

This is likely because all programs in Dataset A follow a fixed op-509

eration sequence. As a result, greedy strategies that prioritize high510

impact operations like extrusion do not lead to incorrect programs.511

8.4. Accuracy on Individual Tasks512

We further assess the accuracy of individual modules (Table 2),513

covering operation prediction and stroke selection for profile,514

extrude, fillet, and chamfer. Chamfer accuracy is not re-515

ported for Dataset A, since it contains no chamfer operations, and516

is also omitted for joint training, as the results are identical to those517

of Dataset B. A prediction is considered correct only if all corre-518

sponding strokes (or loops) are selected.519

8.5. Ablation Study: Graph Design520

We examine our graph design by removing different graph edge521

types and record the network’s performance on profile, ex-522

trude and fillet stroke selections on Dataset A. We show in523

Table 3, that removing any of these graph edges would lead to a524

decrease in certain tasks. Additionally, we experiment with a graph525

submitted to EUROGRAPHICS 2026.

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches 9 of 18

Table 3: Ablation study of graph design. We report average accu-
racy for Profile, extrude, and fillet selection tasks.

Edge Type Removed Profile Extrude Fillet

Full Graph 88.7 94.2 89.6
Stroke-intersect-Stroke 86.7% 65.1% 82.1%
Loop-perpendicular-Loop 81.1% 84.4% 87.7%
Loop-contains-Loop 69.3% 93.6% 89.2%
Stroke-to-Loop 82.3% 13.5% 85.6%
Stroke Order 67.2% 92.8% 70.4%
No Loop Nodes 45.6% / /

Table 4: Top-3 results success rate (%) on Dataset B across differ-
ent program lengths and numbers of SMC particles.

Particles < 5 Step 5–7 Step 8–10 Step 11–15 Step

30 Particles 99.2% 94.4% 82.9% 38.5%
50 Particles 99.2% 95.1% 83.9% 48.0%
100 Particles 99.2% 95.1% 87.4% 52.1%

that contains only stroke nodes. In this setting, the profile pre-526

diction is reformulated as identifying all strokes that form the pro-527

file region. The result of this variant is shown in the last row of the528

table.529

8.6. Impact of Program Length and Sampling Budget530

Our system’s performance declines as the length of the target CAD531

program increases. Also larger number of particles during the SMC532

sampling process may improve results. We quantify this relation-533

ship using Dataset B (which has varying program length) in table 4.534

Our system performance degrades significantly for programs535

longer than 10 steps, and especially beyond 12. These failure cases536

often involve missing smaller geometric features, such as fil-537

lets or chamfers (Figure 16). This degradation is likely due to538

several factors. First, longer programs correspond to sketches with539

more strokes, which inherently increases difficulty of the genera-540

tion process. Second, autoregressive models are more prone to er-541

rors as sequence length increases. Third, the value estimation func-542

tion performs less reliably on complicated densely sketches, which543

makes it hard to identify the 3 most promising final outputs.544

8.7. Results Comparison with Free2CAD545

We demonstrate that incorporating construction lines enables our546

method to reconstruct shapes that previous approaches, such as547

Free2CAD [LPBM22], fail to capture. The limitation arises be-548

cause relying solely on feature lines makes it difficult to recover549

the complex sequence of additive and subtractive operations. Mul-550

tiple edits may occur in the same spatial region and their traces are551

often absent in the final geometry.552

In Figure 17, we highlight six examples taken from the553

Free2CAD supplemental material where the system was unable554

to generate the correct shapes. Since the original sketches contain555

only feature lines, important details are lost and the resulting re-556

constructions deviate from the intended design. To address this, we557

redrew the sketches with construction lines and applied our method.558

The inclusion of construction lines provides additional cues about559

intermediate structures in the modeling process, allowing our ap-560

proach to accurately interpret them and produce final shapes that561

more closely match the sketch’s intent.562

8.8. Evaluating on Synthetic 2D Sketches563

We qualitatively evaluate our method on synthetic 2D sketch564

drawings that are lifted to 3D to simulate noisy 3D sketches.565

Specifically, we first sample a subset of examples from566

CAD2Sketch [HLMB22], which generates 2D sketches from 3D567

shapes. We then uplift these sketches into 3D space using a568

symmetry-based algorithm [HGSB22]. As shown in Figure 18, our569

method successfully reconstructs the intended shapes.570

8.9. User Study: Creating 3D Shape from 2D Sketches571

We further evaluated our method on real-world 2D drawings.572

Specifically, we invited three students with limited prior CAD de-573

sign experience and one student designer proficient in CAD design574

to create 2D sketches using an existing drawing interface equipped575

with a 3D lifting algorithm [WB25, HGSB22] (Appendix F). The576

resulting 3D sketches were then processed with CADrawer to gen-577

erate 3D B-rep shapes. Each participant first received a brief 15-578

minute tutorial on the UI system (Appendix F) and on perspec-579

tive drawing. They were then asked to produce three sketches of580

their choice in 2D space, which the system automatically uplifted581

into 3D sketches. While the participants exhibited diverse sketch-582

ing habits, most of them used construction lines, consistent with583

our assumption (further discussed in Appendix G).584

On average, participants spent about 21 minutes completing all585

three sketches. Students with limited prior CAD design experience586

found perspective drawing increasingly difficult as the sketches587

grew more complex, whereas the proficient student designer found588

our UI more intuitive and convenient. We then applied CADrawer589

to translate these 3D sketches into CAD programs, with the results590

presented in Figure 19.591

We used a 5-point scale (1 = very unsatisfied/very different, 5592

= very satisfied/highly similar) to evaluate participant feedback.593

Overall, participants reported a high level of satisfaction with both594

the sketching process and the automatic 3D lifting. The average595

similarity score was 4.6/5, indicating that the generated shapes596

were generally considered close to the original sketches. The sys-597

tem also received an average ease-of-use rating of 4.2/5. All par-598

ticipants with limited CAD experience agreed that it made creating599

3D shapes easier than working directly with CAD software. In con-600

trast, the proficient student designer found direct modeling in CAD601

software easier and more intuitive.602

8.10. User Study: Expert Manual Shape Reconstruction603

We dalso conducted a second user study to directly compare hu-604

man experts in reconstructing 3D shapes from sketch drawing with605

the automated generation process of CADrawer. We invited three606

submitted to EUROGRAPHICS 2026.

10 of 18 SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

student designers from a prestigious design school, each profi-607

cient in CAD software and experienced in manual modeling work-608

flows. In this study, participants were provided with six 3D sketches609

and asked to reconstruct the corresponding B-rep shapes manually,610

without the assistance of our system.611

During the process, we observed that participants often strug-612

gled with sketches that involved complex modeling steps, particu-613

larly those requiring multiple subtraction operations. Overlapping614

strokes frequently created visual ambiguities, making it difficult to615

determine the intended sequence of operations. Participants also616

encountered challenges in accurately interpreting perspective from617

the sketches, whereas CADrawer automatically extracts precise ge-618

ometric parameters from strokes.619

At the same time, human designers demonstrated strong contex-620

tual reasoning and an ability to infer design intent beyond what was621

explicitly drawn. This often allowed them to avoid certain mistakes622

made by our system, such as misinterpreting partially drawn or am-623

biguous strokes. Notably, they could still infer correct parameters624

even when stroke values extended beyond the thresholds used by625

our algorithm.626

We present a side-by-side comparison of the manually created627

shapes and the results generated by our system in Figure 20. This628

comparison illustrates the complementary strengths of expert hu-629

man reasoning and automated CAD generation.630

9. Conclusion631

We introduce CADrawer, a new framework for generating CAD632

programs from 3D sketches.To the best of our knowledge, we are633

the first to leverage sketch construction lines as additional infor-634

mation for recovering intermediate CAD operations, which allows635

us to successfully manage complex sketches that challenged previ-636

ous approaches. But construction lines bring additional clutter and637

ambiguity, which we handle with a combination of autoregressive638

prediction and Sequential Monte Carlo exploration.639

A key challenge that remains is the lack of large-scale datasets640

of real-world sketch drawings and their corresponding B-rep pro-641

grams. Acquiring such data is difficult due to the manual effort re-642

quired. This limitation constrains the diversity of training samples643

and hinders the model’s ability to generalize across varying sketch-644

ing styles and modeling workflows.645

One promising direction is to adopt a bootstrapped program646

synthesis strategy, as explored in [JWR22, EWN∗21, JGMR23],647

where two networks are jointly trained to synthesize programs648

from sketches and generate human-like sketches from programs at649

the same time. This approach enables training an initial inference650

model on a small dataset, executing it to generate synthetic sketch-651

program pairs, and iteratively refining both the model and dataset652

via self-supervised learning.653

References654

[CF25] CHEREDDY S., FEMIANI J.: Sketchdnn: Joint continuous-655

discrete diffusion for CAD sketch generation. In Proceedings of the 42nd656

International Conference on Machine Learning (ICML) (2025), PMLR,657

pp. 1–17. 17 pages, 63 figures. URL: https://arxiv.org/abs/658

2507.11579, doi:10.48550/arXiv.2507.11579. 3659

[CLS19] CHEN X., LIU C., SONG D.: Execution-guided neural program660

synthesis. ICLR (2019). Presented at ICLR 2019. 3661

[CRN∗22] COLLIGAN A. R., ROBINSON T. T., NOLAN D. C., HUA662

Y., CAO W.: Hierarchical cadnet: Learning from b-reps for machining663

feature recognition. Computer-Aided Design 147 (June 2022). doi:664

10.1016/j.cad.2022.103226. 3665

[CSMS13] CORDIER F., SEO H., MELKEMI M., SAPIDIS N. S.: Infer-666

ring mirror symmetric 3d shapes from sketches. Computer Aided Design667

45, 2 (2013). 3668

[DIP∗18] DU T., INALA J. P., PU Y., SPIELBERG A., SCHULZ A., RUS669

D., SOLAR-LEZAMA A., MATUSIK W.: Inversecsg: Automatic conver-670

sion of 3d models to csg trees. ACM Transactions on Graphics (Proc.671

SIGGRAPH Asia 37, 6 (2018). 3672

[ENP∗19] ELLIS K., NYE M., PU Y., SOSA F., TENENBAUM J.,673

SOLAR-LEZAMA A.: Write, execute, assess: Program synthesis with674

a repl. ICML (June 2019). doi:10.48550/arXiv.1906.04604.675

3676

[ERSLT18] ELLIS K., RITCHIE D., SOLAR-LEZAMA A., TENENBAUM677

J. B.: Learning to infer graphics programs from hand-drawn images.678

NeurIPS (July 2018). doi:10.48550/arXiv.1707.09627. 3679

[EWN∗21] ELLIS K., WONG C., NYE M., SABLÉ-MEYER M.,680

MORALES L., HEWITT L., CARY L., SOLAR-LEZAMA A., TENEN-681

BAUM J. B.: Dreamcoder: Bootstrapping inductive program synthesis682

with wake-sleep library learning. In Proceedings of the ACM SIGPLAN683

International Symposium on New Ideas, New Paradigms, and Reflec-684

tions on Programming and Software (Onward!) (2021), ACM, pp. 835–685

850. URL: https://doi.org/10.1145/3486607.3486750,686

doi:10.1145/3486607.3486750. 10687

[GHL∗20] GRYADITSKAYA Y., HÄHNLEIN F., LIU C., SHEFFER A.,688

BOUSSEAU A.: Lifting freehand concept sketches into 3d. TOG 39, 6689

(Nov 2020). doi:10.1145/3414685.3417851. 2, 3690

[GLP∗22] GUO H., LIU S., PAN H., LIU Y., TONG X., GUO B.: Com-691

plexgen: Cad reconstruction by b-rep chain complex generation. ACM692

Transactions on Graphics (SIGGRAPH) 41, 4 (2022). 3, 6693

[GSH∗19] GRYADITSKAYA Y., SYPESTEYN M., HOFTIJZER J. W.,694

PONT S., DURAND F., BOUSSEAU A.: Opensketch: A richly-annotated695

dataset of product design sketches. ACM Transactions on Graphics696

(Proc. SIGGRAPH Asia) (2019). 2697

[GXL13] GAO S., XU X., LIN C.: Topology reconstruction for698

b-rep modeling from 3d mesh in reverse engineering applications.699

Computer-Aided Design 45, 2 (2013), 496–507. URL: https:700

//www.researchgate.net/publication/258712788_701

Topology_Reconstruction_for_B-Rep_Modeling_from_702

3D_Mesh_in_Reverse_Engineering_Applications,703

doi:10.1016/j.cad.2012.10.010. 6704

[Hen12] HENRY K.: Drawing for product designers. Laurence King705

Publishing, 2012. 1706

[HGSB22] HÄHNLEIN F., GRYADITSKAYA Y., SHEFFER A.,707

BOUSSEAU A.: Symmetry-driven 3d reconstruction from concept708

sketches. SIGGRAPH (July 2022). doi:10.1145/3528233.709

3530723. 2, 3, 9, 15, 17710

[HKYM16] HUANG H., KALOGERAKIS E., YUMER E., MECH R.:711

Shape synthesis from sketches via procedural models and convolutional712

networks. IEEE Transactions on Visualization and Computer Graphics713

(TVCG) 22, 10 (2016), 1. 3714

[HLMB22] HÄHNLEIN F., LI C., MITRA N. J., BOUSSEAU A.:715

Cad2sketch: Generating concept sketches from cad sequences. ACM716

Transactions on Graphics (TOG) 41 (November 2022), 1–18. doi:717

10.1145/3550454.3555488. 1, 7, 9, 15718

[JGMR23] JONES R. K., GUERRERO P., MITRA N. J., RITCHIE D.:719

Shapecoder: Discovering abstractions for visual programs from unstruc-720

tured primitives. arXiv preprint arXiv:2305.05661 (2023). Presented721

at SIGGRAPH 2023. URL: https://arxiv.org/abs/2305.722

05661, doi:10.48550/arXiv.2305.05661. 10723

submitted to EUROGRAPHICS 2026.

https://arxiv.org/abs/2507.11579
https://arxiv.org/abs/2507.11579
https://arxiv.org/abs/2507.11579
https://doi.org/10.48550/arXiv.2507.11579
https://doi.org/10.1016/j.cad.2022.103226
https://doi.org/10.1016/j.cad.2022.103226
https://doi.org/10.1016/j.cad.2022.103226
https://doi.org/10.48550/arXiv.1906.04604
https://doi.org/10.48550/arXiv.1707.09627
https://doi.org/10.1145/3486607.3486750
https://doi.org/10.1145/3486607.3486750
https://doi.org/10.1145/3414685.3417851
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://doi.org/10.1016/j.cad.2012.10.010
https://doi.org/10.1145/3528233.3530723
https://doi.org/10.1145/3528233.3530723
https://doi.org/10.1145/3528233.3530723
https://doi.org/10.1145/3550454.3555488
https://doi.org/10.1145/3550454.3555488
https://doi.org/10.1145/3550454.3555488
https://arxiv.org/abs/2305.05661
https://arxiv.org/abs/2305.05661
https://arxiv.org/abs/2305.05661
https://doi.org/10.48550/arXiv.2305.05661

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches 11 of 18

[JHC∗21] JONES B., HILDRETH D., CHEN D., BARAN I., KIM V. G.,724

SCHULZ A.: Automate: A dataset and learning approach for automatic725

mating of cad assemblies. ACM Transactions on Graphics (TOG) 40726

(December 2021), 1–18. doi:10.1145/3478513.3480562. 3727

[JNK∗23] JONES B., NOECKEL J., KODNONGBUA M., BARAN I.,728

SCHULZ A.: B-rep matching for collaborating across cad systems.729

ACM Transactions on Graphics 42 (August 2023). doi:10.1145/730

3592125. 3731

[JWR22] JONES R. K., WALKE H., RITCHIE D.: Plad: Learning732

to infer shape programs with pseudo-labels and approximate distribu-733

tions. arXiv preprint arXiv:2011.13045 (2022). Presented at CVPR734

2022. URL: https://arxiv.org/abs/2011.13045, doi:10.735

48550/arXiv.2011.13045. 10736

[KMP∗18] KALYAN A., MOHTA A., POLOZOV O., BATRA D., JAIN737

P., GULWANI S.: Neural-guided deductive search for real-time pro-738

gram synthesis from examples. arXiv (April 2018). Published in ICLR739

2018, International Conference on Learning Representations. doi:740

10.48550/arXiv.1804.01186. 3741

[KSA23] KUZNETSOV P., SPITSYN A., ARUTYUNOV R.: Simplification742

of 3d cad model in voxel form for mechanical parts using a gan-based743

network. Computer-Aided Design 162 (2023). URL: https:744

//www.sciencedirect.com/science/article/pii/745

S0010448523001094, doi:10.1016/j.cad.2023.103461.746

6747

[LB25] LIU C., BESSMELTSEV M.: State-of-the-art report in sketch pro-748

cessing. Computer Graphics Forum (2025). 2749

[LCLT08] LIU J., CAO L., LI Z., TANG X.: Plane-based optimization750

for 3d object reconstruction from single line drawings. IEEE Transaction751

on Pattern Analysis Machine Intelligence 30, 2 (2008), 315–327. 3752

[LCP∗24] LIU Y., CHEN J., PAN S., COHEN-OR D., ZHANG H.,753

HUANG H.: Split-and-fit: Learning b-reps via structure-aware voronoi754

partitioning. ACM Transactions on Graphics (TOG) 43, 4 (2024), 108:1–755

108:13. URL: https://doi.org/10.1145/3658155, doi:756

10.1145/3658155. 6757

[LGG∗17] LIN T.-Y., GOYAL P., GIRSHICK R., HE K., DOLLÁR P.:758

Focal loss for dense object detection. arXiv preprint arXiv:1708.02002759

(2017). Presented at ICCV 2017. URL: https://arxiv.org/abs/760

1708.02002, doi:10.48550/arXiv.1708.02002. 5761

[LOWS23] LIU Y., OBUKHOV A., WEGNER J. D., SCHINDLER K.:762

Point2cad: Reverse engineering cad models from 3d point clouds. CVPR763

(December 2023). doi:10.48550/arXiv.2312.04962. 3764

[LPBM20] LI C., PAN H., BOUSSEAU A., MITRA N. J.: Sketch2cad:765

Sequential cad modeling by sketching in context. TOG 39, 6 (Nov 2020).766

doi:10.1145/3414685.3417807. 1, 2, 3, 4767

[LPBM22] LI C., PAN H., BOUSSEAU A., MITRA N. J.: Free2cad:768

Parsing freehand drawings into cad commands. TOG 41, 4 (July 2022).769

doi:10.1145/3528223.3530133. 1, 2, 3, 4, 9, 14, 17770

[LS96] LIPSON H., SHPITALNI M.: Optimization-based reconstruction771

of a 3d object from a single freehand line drawing. Computer-Aided772

Design 28, 8 (1996). 3773

[LWJ∗22] LAMBOURNE J. G., WILLIS K., JAYARAMAN P. K., ZHANG774

L., SANGHI A., MALEKSHAN K. R.: Reconstructing editable prismatic775

cad from rounded voxel models. In SIGGRAPH Asia Conference Papers776

(2022). 3777

[NGDGA∗16] NISHIDA G., GARCIA-DORADO I., G. ALIAGA D.,778

BENES B., BOUSSEAU A.: Interactive sketching of urban procedural779

models. ACM Transactions on Graphics (Proc. SIGGRAPH) (2016). 3780

[PCV16] PLUMED R., COMPANY P., VARLEY P. A.: Detecting mirror781

symmetry in single-view wireframe sketches of polyhedral shapes. Com-782

puters & Graphics 59 (2016), 1–12. 3783

[PMKB23] PUHACHOV I., MARTENS C., KRY P. G., BESSMELTSEV784

M.: Reconstruction of machine-made shapes from bitmap sketches.785

ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 42, 6 (2023). 3786

[RDM∗24] RUKHOVICH D., DUPONT E., MALLIS D., CHERENKOVA787

K., KACEM A., AOUADA D.: Cad-recode: Reverse engineering cad788

code from point clouds. arXiv preprint arXiv:2412.14042 (2024).789

arXiv:2412.14042, doi:10.48550/arXiv.2412.14042. 3790

[RGJ∗23] RITCHIE D., GUERRERO P., JONES R. K., MITRA N. J.,791

SCHULZ A., WILLIS K. D. D., WU J.: Neurosymbolic models for792

computer graphics. Computer Graphics Forum 42, 2 (2023), 545–568. 2793

[SGL∗18] SHARMA G., GOYAL R., LIU D., KALOGERAKIS E., MAJI794

S.: Csgnet: Neural shape parser for constructive solid geometry. In795

IEEE Conference on Computer Vision and Pattern Recognition (CVPR)796

(2018). 3797

[SHM∗16] SILVER D., HUANG A., MADDISON C. J., GUEZ A., SIFRE798

L., DRIESSCHE G. V. D., SCHRITTWIESER J., ANTONOGLOU I., PAN-799

NEERSHELVAM V., LANCTOT M., DIELEMAN S., GREWE D., NHAM800

J., KALCHBRENNER N., SUTSKEVER I., LILLICRAP T., LEACH M.,801

KAVUKCUOGLU K., GRAEPEL T., HASSABIS D.: Mastering the game802

of go with deep neural networks and tree search. Nature 529, 7587803

(2016), 484–489. URL: https://www.nature.com/articles/804

nature16961, doi:10.1038/nature16961. 6805

[SKSK09] SCHMIDT R., KHAN A., SINGH K., KURTENBACH G.: An-806

alytic drawing of 3d scaffolds. In ACM transactions on graphics (Proc.807

SIGGRAPH Asia) (2009), vol. 28. 2, 3808

[SLK∗20] SHARMA G., LIU D., KALOGERAKIS E., MAJI S., CHAUD-809

HURI S., MĚCH R.: Parsenet: A parametric surface fitting network for810

3d point clouds. In Proc. European Conference on Computer Vision811

(ECCV) (2020). 3812

[SLX∗25] SUN Y., LI J., XU Z., ZHANG J., LIU X., ZHANG D., LU G.:813

Sketch2seq: Reconstruct CAD models from feature-based sketch seg-814

mentation. IEEE Transactions on Visualization and Computer Graph-815

ics 31, 10 (Oct. 2025), 8214–8230. doi:10.1109/TVCG.2025.816

3566544. 1, 2, 3, 4, 17817

[SSS∗17] SILVER D., SCHRITTWIESER J., SIMONYAN K.,818

ANTONOGLOU I., HUANG A., GUEZ A., HUBERT T., BAKER819

L., LAI M., BOLTON A., CHEN Y., LILLICRAP T., HUI F., SIFRE L.,820

DRIESSCHE G. V. D., GRAEPEL T., HASSABIS D.: Mastering the game821

of go without human knowledge. Nature 550, 7676 (2017), 354–359.822

URL: https://www.nature.com/articles/nature24270,823

doi:10.1038/nature24270. 6824

[Sto08] STORER I.: Reflecting on professional practice : capturing an in-825

dustrial designer’s expertise to support the development of the sketching826

capabilities of novices. Design and Technology Education: An Interna-827

tional Journal 10, 1 (May 2008), 54–72. 1828

[TLS∗19] TIAN Y., LUO A., SUN X., ELLIS K., FREEMAN W. T.,829

TENENBAUM J. B., WU J.: Learning to infer and execute 3d shape830

programs. arXiv (January 2019). Presented at ICLR 2019. doi:831

10.48550/arXiv.1901.02875. 3832

[UyCS∗22] UY M. A., YU CHANG Y., SUNG M., GOEL P., LAM-833

BOURNE J., BIRDAL T., GUIBAS L.: Point2cyl: Reverse engineering834

3d objects from point clouds to extrusion cylinders. CVPR (June 2022).835

doi:10.48550/arXiv.2112.09329. 6836

[WB25] WEI J., BOUSSEAU A. (Eds.):. A Blender Add-on for 3D Con-837

cept Sketching (2025), ACM/EG Expressive Symposium - Posters and838

Demos. URL: http://www-sop.inria.fr/reves/Basilic/839

2025/WB25. 2, 9, 17, 18840

[WJC∗22] WILLIS K. D., JAYARAMAN P. K., CHU H., TIAN Y., LI841

Y., GRANDI D., SANGHI A., TRAN L., LAMBOURNE J. G., SOLAR-842

LEZAMA A., MATUSIK W.: Joinable: Learning bottom-up assembly of843

parametric cad joints. CVPR (April 2022). doi:10.48550/arXiv.844

2111.12772. 3845

[WXW18] WU Q., XU K., WANG J.: Constructing 3d csg models from846

3d raw point clouds. Computer Graphics Forum 37, 5 (2018). 3847

[WXZ21] WU R., XIAO C., ZHENG C.: Deepcad: A deep genera-848

tive network for computer-aided design models. ICCV (October 2021).849

doi:10.48550/arXiv.2105.09492. 3850

submitted to EUROGRAPHICS 2026.

https://doi.org/10.1145/3478513.3480562
https://doi.org/10.1145/3592125
https://doi.org/10.1145/3592125
https://doi.org/10.1145/3592125
https://arxiv.org/abs/2011.13045
https://doi.org/10.48550/arXiv.2011.13045
https://doi.org/10.48550/arXiv.2011.13045
https://doi.org/10.48550/arXiv.2011.13045
https://doi.org/10.48550/arXiv.1804.01186
https://doi.org/10.48550/arXiv.1804.01186
https://doi.org/10.48550/arXiv.1804.01186
https://www.sciencedirect.com/science/article/pii/S0010448523001094
https://www.sciencedirect.com/science/article/pii/S0010448523001094
https://www.sciencedirect.com/science/article/pii/S0010448523001094
https://www.sciencedirect.com/science/article/pii/S0010448523001094
https://www.sciencedirect.com/science/article/pii/S0010448523001094
https://doi.org/10.1016/j.cad.2023.103461
https://doi.org/10.1145/3658155
https://doi.org/10.1145/3658155
https://doi.org/10.1145/3658155
https://doi.org/10.1145/3658155
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://doi.org/10.48550/arXiv.1708.02002
https://doi.org/10.48550/arXiv.2312.04962
https://doi.org/10.1145/3414685.3417807
https://doi.org/10.1145/3528223.3530133
http://arxiv.org/abs/2412.14042
https://doi.org/10.48550/arXiv.2412.14042
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/TVCG.2025.3566544
https://doi.org/10.1109/TVCG.2025.3566544
https://doi.org/10.1109/TVCG.2025.3566544
https://www.nature.com/articles/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.48550/arXiv.1901.02875
https://doi.org/10.48550/arXiv.1901.02875
https://doi.org/10.48550/arXiv.1901.02875
https://doi.org/10.48550/arXiv.2112.09329
http://www-sop.inria.fr/reves/Basilic/2025/WB25
http://www-sop.inria.fr/reves/Basilic/2025/WB25
http://www-sop.inria.fr/reves/Basilic/2025/WB25
https://doi.org/10.48550/arXiv.2111.12772
https://doi.org/10.48550/arXiv.2111.12772
https://doi.org/10.48550/arXiv.2111.12772
https://doi.org/10.48550/arXiv.2105.09492

12 of 18 SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

[WZW∗24] WANG H., ZHAO M., WANG Y., QUAN W., YAN851

D.-M.: VQ-CAD: Computer-aided design model generation with852

vector quantized diffusion. Computer Aided Geometric Design853

111 (2024), 102327. URL: https://www.sciencedirect.854

com/science/article/pii/S016783962400061X,855

doi:10.1016/j.cagd.2024.102327. 3856

[XCS∗14] XU B., CHANG W., SHEFFER A., BOUSSEAU A., MCCRAE857

J., SINGH K.: True2form: 3d curve networks from 2d sketches via selec-858

tive regularization. ACM Transactions on Graphics (SIGGRAPH 2014859

Papers) 33 (2014). doi:10.1145/2601097.2601204. 3860

[XPC∗21] XU X., PENG W., CHENG C.-Y., WILLIS K. D., RITCHIE861

D.: Inferring cad modeling sequences using zone graphs. CVPR (April862

2021). doi:10.48550/arXiv.2104.03900. 3863

[YDSG21] YU X., DIVERDI S., SHARMA A., GINGOLD Y.: ScaffoldS-864

ketch: Accurate industrial design drawing in vr. In Proceedings of ACM865

Symposium on User Interface Software and Technology (2021), UIST. 2866

[YLT13] YANG L., LIU J., TANG X.: Complex 3d general object re-867

construction from line drawings. In IEEE Int. Conference on Computer868

Vision (2013). 3869

[YZF∗21] YANG L., ZHUANG J., FU H., WEI X., ZHOU K., ZHENG Y.:870

Sketchgnn: Semantic sketch segmentation with graph neural networks.871

ACM Transactions on Graphics 40, 3 (2021). 4872

[ZHFL23] ZONG Z., HE F., FAN R., LIU Y.: P2cadnet: An end-to-end873

reconstruction network for parametric 3d cad model from point clouds.874

CoRR abs/2310.02638 (2023). URL: https://arxiv.org/abs/875

2310.02638. 6876

submitted to EUROGRAPHICS 2026.

https://www.sciencedirect.com/science/article/pii/S016783962400061X
https://www.sciencedirect.com/science/article/pii/S016783962400061X
https://www.sciencedirect.com/science/article/pii/S016783962400061X
https://doi.org/10.1016/j.cagd.2024.102327
https://doi.org/10.1145/2601097.2601204
https://doi.org/10.48550/arXiv.2104.03900
https://arxiv.org/abs/2310.02638
https://arxiv.org/abs/2310.02638
https://arxiv.org/abs/2310.02638

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches 13 of 18

(a)Stroke Cloud (b)Ground Truth

Example A Example B

(c)Prediction (d)Diff (a)Stroke Cloud (b)Ground Truth (c)Prediction (d)Diff

Figure 11: Stroke filtering as a preprocessing step. We show two sets of results where strokes are classified as either used in the generation
history or not. In both exampkes, some essential strokes are excluded, making the correct reconstructing infeasible.

Fillet Fillet TerminateExtrudeProfile Profile Subtract SubtractProfile

Figure 12: We show the entire process of generating a CAD program from Dataset A. For each step, the selected strokes (highlighted in red)
are shown at the top of the box, while the generated B-rep is shown at the bottom.

Fillet TerminateExtrudeProfile Chamfer Add FilletProfile Profile Subtract

Figure 13: We show the entire process of generating a CAD program from Dataset B. For each step, the selected strokes (highlighted in red)
are shown at the top of the box, while the generated B-rep is shown at the bottom.

Figure 14: We show eight results of CAD program generation from Dataset A. Each box contains one result, with the shape shown from two
different perspectives.

submitted to EUROGRAPHICS 2026.

14 of 18 SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

Program

length = 4

Program
length = 5

Program length = 7 Program length = 8 Program length = 9 Program length = 10 Program length = 12

Figure 15: We present seven results of CAD program generation from Dataset B with varying program length. Each box contains one result,
with the shape shown from one or two different perspectives.

Early Termination

Forget Fillet/Chamfer

Failure CauseOur ResultGround Truth3D Sketch

Failure CauseOur ResultGround Truth3D Sketch Failure CauseOur ResultGround Truth3D Sketch Failure CauseOur ResultGround Truth3D Sketch

Failure CauseOur ResultGround Truth3D Sketch Failure CauseOur ResultGround Truth3D Sketch

Doesn’t select Fillet pair

Fillet edge length wrong

Cannot form a

valid extrusion faceWrong Profile /

Param Fitting Problem

Stroke Type error

Arc is fitted as Straight Line

Profile Signal too weak

Figure 16: We present six failure cases. In each box, we show the input 3D sketch, the ground truth, our generated result, and the incorrectly
selected strokes in the 3D sketch that led to the failure. Differences between our result and the ground truth are highlighted for clarity. The
most common failures involve misclassification of small features such as fillets or chamfers, as seen in the first row.

Ground Truth Ground Truth Ground Truth

Ground TruthGround TruthGround Truth

Feature
Line Only

With

Construction Line

Free2CAD

Result

Feature
Line Only

Free2CAD

Result

Feature
Line Only

Free2CAD

Result

Feature
Line Only

Free2CAD

Result

Feature
Line Only

Free2CAD

Result

Our Result
With

Construction Line
Our Result

With

Construction Line

Our Result

With

Construction Line

Our Result

With

Construction Line

Our Result With

Construction Line

Our Result

Feature
Line Only

Free2CAD

Result

Figure 17: We present six examples from Free2CAD [LPBM22]. In each box, the top row shows the ground truth shape, the input sketch for
Free2CAD, and the result generated by their method. The bottom row shows our redrawn sketch with construction lines and the corresponding
result produced by our system. Original figures copied from Free2CAD.

submitted to EUROGRAPHICS 2026.

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches 15 of 18

Perspective 1 Perspective 2

Our ResultUplifted 3D Sketch2D Sketch Our ResultUplifted 3D Sketch2D Sketch Our ResultUplifted 3D Sketch2D Sketch

Perspective 1 Perspective 2 Perspective 1 Perspective 2

(a) (b) (c)

Figure 18: We selected 2D sketches from a previous work [HLMB22], and then lift them back to 3D space using a previous method
[HGSB22]. We show the resulting shapes. Although the lifting approach may introduce minor issues—as seen in (c), where the circle is
distorted during the uplift process—our system can still make for valid interpretations based on the 3D sketch.

2D Drawing 3D Sketch Generated Shape

2D Drawing 3D Sketch Generated Shape

2D Drawing 3D Sketch Generated Shape

2D Drawing 3D Sketch Generated Shape 2D Drawing 3D Sketch Generated Shape

2D Drawing 3D Sketch Generated Shape

Figure 19: We invited three students with limited CAD design experience and one student proficient in CAD design to use our system. The
first row presents results from a non-proficient student, while the second row shows the work of the proficient student designer.

Designer1 Designer23D Sketch Our Result

Designer1 Designer23D Sketch Our Result

Designer1 Designer23D Sketch Our Result

Designer1 Designer23D Sketch Our Result

Designer1 Designer23D Sketch Our Result

Designer1 Designer23D Sketch Our Result

Figure 20: Comparison between reconstructions by student designers and our method. Each student was given six 3D sketches and asked to
recreate the corresponding B-rep shapes. The designers performed well on simpler 3D sketches (first row), but encountered difficulties with
more complex ones (second row), where many lines appear cluttered especially for 3D sketches with multiple subtractions. In contrast,
our method can still handle these cases.

submitted to EUROGRAPHICS 2026.

16 of 18 SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

Appendix A: Graph Node Feature Representation877

We show the details of our graph node features in Figure 21. Both878

stroke nodes and loop nodes contain 12 values.879

For stroke nodes, the features include parametric information,880

opacity, circular attributes, stroke type encoding, and a binary label.881

There are five stroke types: straight lines, circular arcs, full circles,882

ellipses, and free-form curves, as shown in Table 5.883

Table 5: Node features for stroke nodes. Each stroke node has 12
values, including parametric and semantic features.

Stroke Type Parametric Function Opacity Circular Features Stroke Type Binary Label

Straight Line Start and End points Yes / 1 0 or 1
Circular Arc Start and End points Yes Center 2 0 or 1
Full Circle Center and Normal Yes Radius + [0,0] 3 0 or 1
Ellipse Center1 and Center2 Yes Radius1, Radius2+ [0] 4 0 or 1
Free-form Curve Start and End points Yes Sampled Point 5 0 or 1

For loop nodes, the first 11 values are padding, and the final value884

is a binary label indicating whether the loop is used. We do not as-885

sign additional features to loop nodes, as all necessary information886

can be derived from the strokes that form them.887

Graph Overview

Figure 21: Overview of graph node features. We represent each
stroke node using 12 values that include parametric geometry,
opacity, circular characteristics, stroke type encoding, and a binary
label. Loop nodes only contain a binary label in the final feature
slot, with the remaining dimensions zero-padded.

Appendix B: Graph Encoder Architecture888

We present our graph encoder in Figure 22. All tasks in our frame-889

work utilize this shared encoder to generate latent node embeddings890

for both stroke and loop nodes in the graph.891

Each node in the input graph is initialized with a 12-dimensional892

feature vector. The output of the encoder is a 128-dimensional node893

embedding. The encoder first applies a graph convolutional layer894

to project the input features into a higher-dimensional space. This895

is followed by three residual blocks, each consisting of two graph896

convolutional layers with skip connections to preserve informa-897

tion flow. Finally, we apply another concluding graph convolutional898

layer is applied, followed by a ReLU activation to produce the final899

node embeddings.900

Appendix C: Parameter Extraction for CAD Operations901

Given the strokes (or loops) associated with each operation, we ex-902

tract the continuous values required to parameterize them:903

• Profile: A loop node is selected. We first project all strokes in904

the loop onto the best-fitting plane. Then, we extract one unique905

point from each stroke, resulting in n points from n strokes. Two906

points are considered identical if they lie within a threshold dis-907

tance of 0.2 × max(stroke_length1,stroke_length2). These ex-908

tracted points are used to define a plane by fitting with least909

squares:910

min
n,d

n

∑
i=1

(
n⊤pi +d

)2
∥n∥= 1

where pi are the extracted points and n is the plane normal.911

• Extrude: A loop node is selected as the base face. The extrusion912

amount is computed as the Euclidean distance between the initial913

and final loop planes:914

θextrude = ∥loopend − loopstart∥ .

• Fillet: The fillet radius is directly extracted from the selected arc915

stroke:916

θfillet = rarc.

To identify the corresponding B-rep edge, we find the edge917

equidistant to the two endpoints of the fillet stroke.918

• Chamfer: The chamfer amount is approximated using the length919

of the selected edge:920

θchamfer =
∥pend −pstart∥√

2
,

assuming a 45° chamfer angle. Similar to the fillet case, we lo-921

cate the target B-rep edge as the one equidistant from the end-922

points of the chamfer stroke.923

Appendix D: Dataset Preparation using Monte Carlo Tree Search924

To prepare the dataset for training our value function, we construct925

trees that explore all possible execution paths of the system. Since926

exhaustive enumeration is infeasible, we approximate this process927

using Monte Carlo Tree Search (MCTS), which prioritizes explo-928

ration along high-impact branches.929

In our implementation, we first expand the tree until it reaches930

100 leaf nodes, regardless of tree depth. Among these, we select the931

top 20 leaf nodes with the highest probabilities, as they contribute932

most significantly to the overall value. For the remaining nodes, we933

perform four random executions to estimate their value. In contrast,934

the top 20 nodes undergo full tree expansion to more accurately935

evaluate their final result. This hierarchical search strategy reduces936

the total number of branches while retaining the fidelity of value937

estimation.938

Empirically, we observe that programs with 8 operations typi-939

cally result in 300–500 tree states, while programs with 12 opera-940

tions yield approximately 1200–1800 states.941

Appendix E: Algorithm to Simulating Human Drawings942

We propose a novel method to perturb a clean 3D sketches in order943

to simulate human-like drawing variations (Figure 23). The input944

to our system is a set of polylines, each consisting of 10 sampled945

submitted to EUROGRAPHICS 2026.

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches 17 of 18

G
ra

ph
 C

on
v

G
ra

ph
 C

on
v

G
ra

ph
 C

on
v

N
 x

 1
2

N
 x

 3
2

G
ra

ph
 C

on
v

G
ra

ph
 C

on
v

G
ra

ph
 C

on
v

N
 x

 3
2

G
ra

ph
 C

on
v

G
ra

ph
 C

on
v

N
 x

 3
2

G
ra

ph
 C

on
v

R
es

id
ua

l C
on

v

N
 x

 6
4

N
 x

 3
2

N
 x

 6
4

G
ra

ph
 C

on
v

G
ra

ph
 C

on
v

G
ra

ph
 C

on
v

G
ra

ph
 C

on
v

N
 x

 3
2

N
 x

 1
28

N
 x

 3
2

R
eL

u

Decoder

x3

Figure 22: Overview of the graph encoder architecture. The input is a heterogeneous graph Gt , where stroke and loop nodes are initialized
with 12-dimensional features. The encoder applies graph convolutions to expand features to 128 dimensions through stacked layers and
residual blocks, followed by a ReLU activation before passing to the decoder for task-specific predictions.

Cleaned Perturbed Cleaned Perturbed Cleaned Perturbed Cleaned Perturbed

Figure 23: 3D Sketch perturbation to simulate human sketching. We show examples of clean and perturbed 3D Sketch. Perturbations are
designed to emulate natural drawing variations such as jitter, overdrawing, stroke duplication, and deletion.

points. The output has the same structure but with added perturba-946

tions.947

Our perturbation process consists of two main steps. First, we948

perform stroke type fitting (as described in the graph construction949

section) to identify the type of each stroke. Second, we apply dif-950

ferent perturbation strategies depending on the stroke type:951

• Straight Lines and Free-form Curves: We simulate overdrawn952

strokes by randomly extending both the start and end points by953

a small fraction of the stroke length. We then perturb these end-954

points in arbitrary directions, again by a fraction of the stroke955

length. Each intermediate point along the stroke is also randomly956

displaced by a small amount relative to the stroke length.957

• Arcs: We first compute the arc’s parametric representation. We958

then interpolate between the arc and a straight line connecting959

its endpoints, randomly blending the two 3D lines. The start and960

end points are also perturbed in arbitrary directions based on the961

stroke length.962

• Full Circles and Ellipses: We treat full circles as a special case963

of ellipses where the two foci coincide and the major and mi-964

nor radii are equal. We perturb these by randomly displacing the965

center based on the radius, and randomly modifying the radius966

itself. Additionally, we may repeat the entire stroke with high967

probability to simulate overdrawing.968

After applying per-stroke perturbations, we further perturb the969

entire 3D Sketch by randomly removing 5% of the strokes and du-970

plicating 10% of them.971

Appendix F: UI Interface : Taking 2D Sketch as Input972

We build on the UI system introduced in prior work [WB25], which973

incorporates a 2D sketch lifting algorithm [HGSB22]. We chose974

this system due to our familiarity with it, though our method also975

supports other forms of input that produce 3D sketches. The system976

provides a Blender add-on that allows users to create 2D drawings977

directly within the software, which are then automatically lifted978

into 3D sketches. A demonstration is shown in Figure 24, with ad-979

ditional details available in the original work [WB25].980

Appendix G: Participants’ Usage of Construction Lines981

We also observed that the participants exhibited diverse sketching982

habits, particularly in their use of construction lines.983

Intermediate Lines All participants, both proficient and non-984

proficient in design, draw intermediate lines, as they found it easier985

to outline basic shapes first and then refine them, rather than at-986

tempting to draw the final feature lines directly (Figure 25). This987

observation aligns with our assumption that intermediate construc-988

tion lines are frequently used in human drawings and play a cru-989

cial role in accurately recovering shapes. In contrast, prior works990

[LPBM22, SLX∗25] does not account for such lines.991

Grid Lines and Projection Lines Participants demonstrated dif-992

ferent approaches to using additional construction lines, such as993

grid lines and projection lines, which do not appear in the inter-994

mediate shapes but assist in correcting perspectives. Overall, the995

student designer was more inclined to draw deliberate construc-996

tion lines for perspective correction, whereas the other participants997

were less consistent. For instance, one participant never used pro-998

jection or grid lines, noting that the built-in UI grid was sufficient999

for maintaining alignment. Others, however, found projection lines1000

helpful when aligning distant features. Additionally, one participant1001

observed that drawing larger shapes with long strokes made the1002

interface difficult to manipulate, as correcting perspective in such1003

submitted to EUROGRAPHICS 2026.

18 of 18 SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

(a) 2D Drawing Process

(b) Lifted Strokes in Blender UI (c) 3D Sketch Generated

Figure 24: (a) illustrates the creation of a 2D sketch in Blender. (b) shows the corresponding lifted 3D sketch (in white) alongside the original
2D sketch (in black) within the user interface. (c) presents the final result of the lifted sketches in 3D space. Further details are provided in
the original work [WB25].

(a) Our User’s Drawing Process (with intermediate shapes) (b) Sketch with only
feature lines

Figure 25: We present an example of a participant’s drawing in (a). The participant first sketched the entire cuboid, then added a curve
to indicate the fillet operation. Then the user use projection lines to connect the edges of the cuboid. These project lines help the user to
maintain alignment between the two fillet curves. In contrast, (b) shows the same shape drawn with only the feature lines, which is not how
people typically sketch.

cases was particularly challenging. While the use of construction1004

lines provided some assistance, the process as a whole remained1005

cumbersome.1006

submitted to EUROGRAPHICS 2026.

