® N o o B~ w N

11

EUROGRAPHICS 2026 / B. Masia and J. Thies
(Guest Editors)

Volume 45 (2026), Number 2

CADrawer : Autoregressive CAD Generation from 3D Sketches

SUBMISSION ID : 1070

L £ e
\4\% ¥ \; ¥ \{ ¥
R | Q . < ;‘5\?" |
}
@ 2 iV K
Profile Extrude Subtract Add Fillet
(Plane) (Surface, Amount) (Entity1, Entity2) (Entity1, Entity2) (Edge, Amount)

(a) Input 3D Sketch

(b) Autoregressive generation

Vv

(c) Output B-rep

Figure 1: Our system takes as input a 3D sketch, and autoregressively generates a CAD program that produces the intended shape.

Abstract

In professional design workflows, designers often begin by creating sketch drawings before converting them into CAD programs.
However, prior work on automatically interpreting these sketches has been limited to simplified inputs and fails to account for
construction lines that are ubiquitous in real-world drawings. We present CADrawer, a system that translates 3D sketches into
CAD programs using an autoregressive approach, leveraging construction lines as a rich source of information for recovering
intermediate CAD operations. At each step, CADrawer predicts the next modeling operation and its parameters based on a
graph-based representation of the sketch, which explicitly encodes spatial and temporal relationships between strokes. To im-
prove generation quality, the system maintains multiple candidate programs in parallel, and a learned value function evaluates
these partial programs to guide the search toward the most promising candidates. CADrawer is designed as a complement to
3D sketching interfaces, building on existing methods that creates 3D sketches. We evaluate our method across several datasets,
including those containing dense construction lines and cases without ground-truth B-rep shapes.

CCS Concepts
» Computing methodologies — Shape modeling;

1. Introduction

Computer-Aided Design (CAD) is a widely adopted standard for
creating 3D shapes across various industries. CAD models are typ-
ically represented as programs consisting of a sequence of paramet-
ric modeling operations, such as extruding a 2D profile to create a
solid block or rounding an edge to create a fillet. The parameters
of these operations offer precise control on the dimensions of the
geometry produced when executing the programs.

However, creating CAD models requires significant expertise in
both planning the sequence of modeling operations and selecting
them in feature-rich software interfaces. Meanwhile, sketching of-

submitted to EUROGRAPHICS 2026.

20
21
22
23

fers a quick and flexible way for designers to visualize the 3D
shapes they have in mind, and to plan how to construct these shapes
in CAD modeling. Prior research [LPBM20, HLMB22] and design
educators [Hen12, Sto08] point to strong similarities between the
steps designers follow when sketching 3D shapes, and the opera-
tions they use to model in CAD software. In this paper, we present
a method that exploits these similarities to translate industrial de-
sign sketches into CAD programs.

Prior works [LPBM22, LPBM20, SLX*25] have introduced sys-
tems that recognize CAD operations from sketches, but these meth-
ods are restricted to sketches containing only feature lines, where
each stroke directly corresponds to an edge of the final geometry



24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55

(b)

Figure 2: Examples of sketches that our system can process
(a), compared to the examples of sketches handled by previous
work [LPBM22, LPBM20, SLX*25] (b)

(b) Free2CAD (c) Ours

(a)Target Shape

o N ~

Result Result

Sketch

Sketch

Figure 3: We illustrate a case where Free2CAD [LPBM22] fails
to reconstruct the target shape (a) when relying solely on the fea-
ture lines shown in (b). Since the strokes corresponding to the sub-
traction operation are absent, the method cannot recover the cor-
rect modeling process. In contrast, sketching the same shape with
construction lines provide additional information about intermedi-
ate structures (c), which our method exploits to successfully recon-
struct the intended shape.

(Figure 2). Relying solely on feature lines makes it difficult to re-
cover complex sequences of additive and subtractive operations,
since multiple edits can occur within the same spatial region and
the resulting lines may not appear in the finished shape. In con-
trast, real-world sketches often include construction lines — auxil-
iary strokes that designers use to outline primary object parts with
simple primitives (e.g., cuboids, cylinders) before refining details
[GSH*19]. Such lines frequently represent intermediate shapes in
the design process or help establish perspective. While construction
lines do not appear in the final geometry, many reveal crucial infor-
mation about the process creating the final shape. Figure 3 gives a
typical example of a shape that previous method [LPBM22] fails
to recover using only feature lines.

The main challenge arises from the fact that construction lines
often outnumber feature lines, leading to visual clutter without a
direct correspondence to the final shape. As the number of strokes
grows, the number of possible loops formed by construction lines
also increases, as shown in Figure 4. In addition, designers may
omit or repeat strokes, which further increases ambiguity in real-
world sketches. The problem we address is to infer CAD opera-
tions and their parameters from such noisy and cluttered sketches.
Our system operates on 3D sketches, as intersections and planar cy-
cles are more easily detected in 3D than in 2D. These 3D sketches
are becoming increasingly accessible through sketch-based mod-
eling interfaces [SKSK09, WB25], sketch reconstruction methods
[GHL*20, HGSB22], and VR interfaces [YDSG21]. We demon-
strate our approach on 3D sketches that we have created using an
existing drawing interface and accompanying reconstruction algo-
rithm [WB25,HGSB22], even though our algorithm could apply to
other sources of 3D sketches.

Our key observation is that the geometric relationships between
the strokes convey rich information about the underlying 3D struc-

56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81

82

83
84
85
86
87
88

89

20
91
92
93

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

Figure 4: Construction lines can form multiple loops on the same
surface, increasing ambiguity and complexity in sketch interpreta-
tion.

ture. In contrast to prior work that relies on Transformer-based
models to discover stroke interactions [LPBM22], we explicitly
encode geometric relationships in a graph where nodes represent
sketch entities and edges encode spatial and temporal ordering
between these entities. This custom representation allows us to
adopt a lightweight graph neural network for analyzing the sketch
and predicting the CAD operations. Furthermore, we augment the
graph with information from the generated geometry, which pro-
vides both spatial and programmatic context.

We adopt an autoregressive approach that predicts a single oper-
ation and its corresponding parameters at each step. This sequential
formulation allows the model to postpone uncertain decisions and
use the progressively built shape to guide more informed and im-
mediate predictions. However, like previous methods, this approach
is prone to error accumulation. We maintain a set of candidate pro-
grams in parallel and apply Sequential Monte Carlo (SMC) to re-
sample the best candidates. We use a learned value function that
evaluates each partial program and concentrates computational re-
sources on the most promising ones during the SMC process.

In summary, our system is the first to tackle the challenge of in-
terpreting sketches that include both feature and construction lines.
It takes as input 3D sketches and autoregressively generates CAD
programs that can be executed to produce shapes aligned with the
input. We evaluate our system on both synthetic and hand-drawn
sketches spanning a range of complexities. We will release our code
upon acceptance.

Our main contributions are:

e An autoregressive framework for translating 3D sketches into
CAD programs.

e A graph-based representation of 3D sketches that captures geo-
metric relationships between sketch entities.

e A learned value function that evaluates CAD programs by esti-
mating their potential to reproduce the depicted shape.

2. Related Works

Our work builds on two complementary streams of research —
sketch-based modeling and CAD program synthesis. We refer to
recent surveys for extensive discussions of these two domains
[LB25,RGJ*23].

submitted to EUROGRAPHICS 2026.



94
95
%
97
28
99

100

101

102

103

104

105

106

107

108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126

&
boid

(a) Input
3D Sketch

(b) Sampling

submitted to EUROGRAPHICS 2026.

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

(c) Build Graph

(d) Policy Module

(e) Execution

Stroke .2

Selection @
N
CAD L

Program

B-rep

.

| —

)

Sketch-based modeling. The field of sketch-based modeling has 127
matured to offer a broad range of interactive and automatic ap- 128
proaches to create 3D shapes from 2D drawings. Optimization-
based algorithms tackle this challenge by imposing geometric
constraints between lines, such as parallelism and orthogonality
[LS96], planarity [LCLTO08,YLT13], symmetry [CSMS13,PCV16].
While early methods were limited to polyhedral shapes and clean
drawings, later algorithms have been extended to curved objects
[XCS*14, SKSK09], and sketches with oversketching and con-
struction lines [GHL*20,HGSB22]. Building on this body of work,
we assume that our input is a 3D sketch created with these meth-
ods. Taking 3D sketches as input facilitates the detection of sketch
entities and their spatial relationships, allowing us to focus on rec-
ognizing CAD operations from such entities.

Learning to Recover CAD Programs Our work also relates to
the more general goal of reverse engineering CAD models from di-
verse input, such as voxel grids [SGL* 18, TLS*19,LWJ*22], point
clouds [WXW18, DIP*18, WXZ21, LOWS23, GLP*22, SLK*20,
RDM*24], boundary representations [XPC*21] or others [CF25, 155
WZW™*24]. Working on sketches gives us a unique advantage, as
the drawing sequence we take as input not only depicts the final
shape envisioned by the designer, it also describes how the de- 1s8
signer plans to construct it. This additional information helps recov-

(f) Value Network

a|dwesay

140 gram generation.

We contribute to the family of works that recognize para- 4
metric shapes from sketches [HKYM16, NGDGA™* 16, LPBM20, 14,
LPBM22, PMKB23, SLX*25]. In particular, our method is clos- 143
est to Free2CAD [LPBM?22] that autoregressively identifies groups 144
of strokes that depict CAD operations and derive their parameters.
However, both works are limited to simple, clean contour draw- 44
ings that only contain feature lines that appear in the final shape. In 47
contrast, the design sketches we target contain construction lines, 148
which provide additional information about intermediate CAD op- 149
erations, but also make the identification process more challenging. 150

N
o

[Ty
PN

o o
N o

o
©

152 3. Approach

1nsay 109j8S

Termination

30f18

5

(g) CAD Program

(h) Output B-rep

Figure 5: Our system takes as input (a) a 3D sketch and performs autoregressive generation to produce (g) a CAD program, and (h) the
resulting B-rep shape by executing the program. We create multiple samples that run in parallel, which are resampled after each step to
maintain diversity and guide the generation progress. At each autoregressive step, we first build a graph (c) representing the current state
of the reconstruction (Section 4), and then the policy module (d) predicts a CAD operation and identifies the strokes used to derive its
parameters (Section 5). The current program is then executed and compared with the input 3D sketch to mark off the strokes that are already
represented in the current program (e). This feedback is used as input for the next step. After each step, the value function (f) estimates the
likelihood of success for the current program state, allowing us to focus the search on more promising samples (Section 6).

ering the ordering of CAD operations, as observed by prior work
on sketch-based modeling [LPBM20, LPBM22].

Inspired by prior on deep learning for CAD, we propose to rep-
130 resent 3D sketches with a graph structure that encodes stroke or-
131 dering, stroke intersections, and stroke loops. This choice aligns
132 with the inherent nature of CAD boundary representations (B-reps),
133 where graphs naturally capture the relationships between faces,
134 edges, and vertices. Many previous works have proposed their own
135 graph representations tailored to the specific needs of their tasks
136 [XPC*21, CRN*22, WJC*22, JHC*21, JNK*23]. Our representa-
137 tion jointly encodes the 3D sketch and the B-rep generated by ex-
138 ecuting the CAD program, which enables effective mapping be-
139 tween our input and output while providing spatial context for pro-

Our approach also builds on ideas from previous works in pro-
gram synthesis [ENP*19, ERSLT18, CLS19, TLS*19, KMP*18]
that incorporate execution-based feedback into autoregressive gen-
eration. Specifically, we adopt an autoregressive approach to cap-
ture the sequential nature of CAD programs, where later operations
often depend on geometry generated in earlier steps. We extend this
paradigm by executing the partial program at each step, comparing
the resulting B-rep with the input 3D sketch, and using spatial feed-
back to guide the next prediction. This execution-feedback loop
enables the system to remain aware of construction progress and
151 avoid redundant operations.

Our system takes as input a 3D sketch—a set of 3D polylines, each
represented by 10 sampled points—and outputs a CAD program
that generates the intended 3D shape. We adopt an autoregressive
generation process that adds one CAD operation token and its cor-
responding parameters at each step. Each autoregressive step con-
sists of three actions. First, the system constructs a graph repre-
senting the current generation state (Section 4). Next, the policy



160
161
162
163
164

165
166
167
168

169
170
171
172
173
174

175

176
177
178
179
180
181
182

184
185
186
187
188
189

190
191
192
193
194

196

197

198

199

201

202

204

40f 18

module predicts the next CAD operation and selects the relevant
subset of strokes or loops to determine its parameters (Section 5).
Then, the system executes the current program to produce an up-
dated B-rep and compares it against the input 3D sketch to identify
which strokes have been explained.

We maintain multiple program samples in parallel. After each
step, once all samples have finished execution, a learned value func-
tion evaluates their current states, and a resampling step reallocates
computational resources to the most promising samples (Section 6).

Y@

Profile
(Plane)

Extrude
(Surface, Amount)

Fillet
(Edge, Amount)

Chamfer Add
(Edge, Amount) (Entity1, Entity2)

Subtract
(Entity1, Entity2)
Figure 6: Our system supports six operations: profile, ex—
trude, fillet, chamfer, add, and subtract.

Similar to previous sketch-to-CAD works [LPBM20, LPBM22,
SLX*25] and many other CAD research efforts, our system sup-
ports four fundamental CAD operations: profile, extrude,
fillet, and chamfer (Figure 6). Boolean operations emerge
from the extrude direction. Extruding outward add material, while
extruding inward subt ract material.

4. Graph Representation

At each autoregressive step ¢, we construct a heterogeneous graph
G; = (V,E) that encodes the spatial relationships between strokes,
their sequential order, and the current state of the CAD program
(Figure 7a,b). To capture the program state, we execute the partially
generated CAD program to produce a B-rep and compare it against
the input 3D sketch to identify which strokes have already been
explained (Figure 7c). This comparison provides spatial grounding,
as it is difficult for neural networks to perform spatial reasoning
solely from symbolic program tokens. The resulting unified graph
is in one-to-one correspondence with the evolving CAD program,
ensuring that each program state has a unique graph representation.
This graph serves as input to both the policy module and the value
network, providing information from both the sketch and the CAD
program.

Prior work such as [YZF*21] represents sketches as graphs
where nodes correspond to sampled points and edges to stroke
segments. However, this approach captures only local geome-
try and struggles with more complex sketch structures. In con-
trast, Free2CAD [LPBM22] models sketches as sequences us-
ing a Transformer-based architecture to capture temporal order of
strokes, but neglects spatial relationships and incurs substantial
computational costs (9 days of training reported). Concurrently to
our work, Sketch2Seq [SLX*25] is based on a graph structure that
encodes strokes as nodes and local and distant spatial relationships
as edges, but it ignores stroke ordering and larger entities such as
loops formed by successive strokes.

Our method combines the strengths of these approaches: we en-
code both sequential and spatial relationships in a unified graph
structure using heterogeneous edge types. This allows for efficient

205
206
207
208
209
210
211
212
213
214
215

216

217
218
219
220
221
222
223
224
225

226

227
228
229
230
231
232

233
234

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

processing with a lightweight graph neural network that can be
trained within a few hours. Furthermore, our graph includes two
types of nodes: stroke nodes and loop nodes. Loop nodes repre-
sent coplanar, closed groups of strokes that typically define profile
regions for planar operations. These nodes ensure that the profile
detection module can consistently identify closed, complete sketch
planes. Another challenge is the ambiguity of stroke roles, where
the purpose of a stroke may only become clear after earlier parts of
the sketch are interpreted. Our graph representation addresses this
by allowing each stroke to reason about its spatial and temporal
neighbors and the usage status of those neighbors.

(a) Graph Overview (b) Zoomed-in Graph Structure

Stroke Node

. Stroke Node Stroke Node
[
[
PS [ J
Stroke Node
. . Loop Node

(c) Process of Marking off Strokes

Mark Off
output £ S NOTusedswe | @
AN

[ ]
“\_Usedstroke __;

3D Sketch B-rep Features

Compare
—>

B-rep Trajectory Use d\LTap\* N

Figure 7: An overview of the graph (a), and a zoomed-in view
(b). Panel (c) shows the process of marking off strokes. We exe-
cute the CAD program incrementally to produce all intermediate
shapes generated throughout the process. This is because certain
edge features, especially those involved in subtracts, may not
appear in the final shape. The resulting mark-off (in blue) indicates
which strokes have been explained by the current program.

4.1. Graph Nodes

The input 3D sketch is represented as a set of polylines, with each
polyline sampled at 10 points. For each stroke, we fit a parametric
function based on its geometry, including: straight lines, circular
arcs, full circles, ellipses, and free-form curves. Each stroke node
in our graph encodes the corresponding parametric function, the
stroke’s opacity, its type, and a binary label indicating whether it is
used in the final B-rep. In contrast, each loop node contains only a
binary indicator for B-rep usage. We provide additional details on
the node feature representations in Appendix A.

4.2. Graph Edges

The graph edges capture both the spatial relationships between
nodes and the temporal order of stroke execution. Stroke-order
edges are defined directly from the sequence in which strokes are
drawn, while all other edges are derived purely from geometric re-
lations. To assess the contribution of each edge type, we perform an
ablation study in Section 8.5. The edge categories are as follows:

o Stroke-to-Stroke Edges: Capture intersection between strokes
in the 3D sketch.

submitted to EUROGRAPHICS 2026.



235
236
237
238
239
240
241

242

243
244
245
246
247
248
249
250

251

252
253
254
255

256

257
258

267
268

269

270
271
272
273
274

275
276

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

e Loop-to-Loop Edges: Capture intersection, containment (which
loop contains which), and perpendicular relationships between
loops.

o Stroke-to-Loop Edges: Indicate which strokes constitute a par-
ticular loop.

e Stroke-order Edges: Capture the order in which strokes were
drawn.

5. Policy Module

Our system autoregressively generates a CAD program P =
{p:}L_,, where each p; = (0;,6;) denotes a CAD operation o; and
its associated parameters 0;. At each timestep ¢, the policy mod-
ule takes as input the graph constructed in Section 4 and performs
three tasks: (1) predicting the next CAD operation o (Section 5.2);
(2) selecting the relevant strokes from S (Section 5.2); and (3) in-
ferring the operation parameters 6; based on the selected strokes
(Section 5.3).

5.1. Graph Encoder

We use a shared Graph Convolutional Network (GCN) encoder to
compute node embeddings from the input graph G;. These embed-
dings are then fed into task-specific decoders for different tasks. We
provide detailed architecture of the network in Appendix B.

5.2. Task-Specific Decoders

We design different decoders tailored to different tasks, each fol-
lowing a specific pipeline (see Figure 8), and train them separately.

5.2.1. (a) Operation prediction.

To predict the next CAD operation token, we perform cross-
attention between the program embedding (as query) and the graph
embeddings (as key and value), thereby annotating the program
with geometric context. We then apply self-attention over the an-
notated program embedding (the [CLS] token) to aggregate infor-
mation and produce the next program token:

O]
Lop = — Zyilogﬁop,i‘
=~

12

M

Our loss function is the standard cross-entropy loss, which penal-
izes the model when it assigns low probability to the correct oper-
ation token.

5.2.2. (b—d) Stroke (or Loop) Feature Selection.

For operations that require geometric input, such as selecting a
loop for Profile, strokes for Extrusion, or strokes for Fil—
let/Chamfer, we perform binary classification over the relevant
nodes. For each node v, we compute a selection probability by min-
imizing the following focal loss:

|S]

‘cstroke = - Z OC,‘(I - )’;Stroke,i)Yyi 10g)’}stroke,i7
i=1

(@3]

where y; € {0,1} indicates whether node i is selected, o; = 1.0,
and Y= 1.5. The focal loss [LGG*17] mitigates class imbalance

submitted to EUROGRAPHICS 2026.

277
278
279

280
281
282
283

284
285
286
287
288
289
290
291
292

294
295
296

297

298
299
300
301
302

303

304
305
306
307
308
309

310

311
312
313
314
315
316
317
318

319

321

322
323

324

Sof18

by down-weighting easy negatives, which is important for our case
since only a small fraction of nodes are typically selected at each
step.

The loss function in Eq. (2) serves as the common objective for
all geometric selection tasks. The specific pipeline for construct-
ing the candidate set of graph nodes, however, differs by task, as
described below:

o Profile selection (b): An MLP is applied to the loop embed-
dings, followed by binary classification. The loop with the high-
est probability is selected.

e Extrusion (c): During graph construction, sketch strokes corre-
sponding to previously used sketch operations are masked, so
the graph encodes which strokes are already chosen. The en-
coder produces graph embeddings, and an MLP predicts which
strokes are used for extrusion. A new graph is then built with
these strokes masked, re-encoded, and the decoder selects the
face created by the extrusion.

o Fillet and chamfer selection (d): An MLP is applied directly
to the stroke embeddings, followed by binary classification. The
contributing strokes are then selected.

5.2.3. (e) Value network.

After generating graph embeddings, we compute cross-attention
between the graph embeddings and their mean-pooled representa-
tion. This enables the network to capture both global and local fea-
tures of the graph. The resulting representation is passed through
an MLP to regress to a single scalar value.

5.3. Finding Operation Parameters

Given the strokes (or loops) selected for each operation, we ex-
tract continuous values required to execute that operation. A major
challenge is that the input strokes are sketches that are inherently
imprecise, making it difficult to recover exact parameter values di-
rectly. To address this, we employ a set of geometric algorithms to
infer the parameters, as detailed in Appendix C.

6. SMC Based Program Sampling

Performing the entire autoregressive generation process in a sin-
gle shot is challenging. First, errors can accumulate across steps,
compounding over time. Second, 3D sketches are often ambigu-
ous so that multiple valid interpretations may exist, and later deci-
sions may depend on earlier ones. To capture this uncertainty and
maintain a diverse set of plausible solutions, we adopt a Sequen-
tial Monte Carlo (SMC) framework that maintains a set of samples
CAD programs, referred to as particles.

All particles are initialized from the same state: the empty pro-
gram. At each timestep ¢, each particle samples its next step from
the policy module, which involves predicting the next operation to-
ken and selecting the corresponding strokes. This procedure defines
the prior distribution:

(o) = (4 146

(1) denotes the program step chosen at time k by particle i.

where x;



325
326
327
328
329
330
331

332

333
334
335
336

337
338
339
340
341
342

60f 18

(a) Operation Prediction (b) Profile Selection

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches
(d) Fillet / Chamfer Selection

(e) Value Network

B Graph Encoder i Eieestsy Graph Encoder Graph Encoder
Existing Loop Node Stroke Node l
l Program Embedding Embedding
Mean Pooling
Linear MLP MLP
Stroke + Loop Stroke + Loop
Node Embedding l l Global Node Embedding
- Representation
Selected .7 Selected
Cross Attention o Ly SUCKeS Cross Attention
+ l X
(c) Extrude Face Selection
Self Attention e
1 cLs Token Sketch mask YLP
MLP ) Stroke Node Loop Node
l % Embedding { Embedding 2 J
O i. ;/
Next Operation
MES Extrude mask ULP Extrude Face Graph Value

Figure 8: Overview of the decoder architecture. Each submodule is responsible for a specific task: (a) operation prediction, (b) profile
selection, (c) extrude face selection, (d) fillet/chamfer selection, and (e) value network.

SMC then approximates the posterior distribution p(xg; | ¥),
where y is input graph G;. As directly computing this posterior is
intractable, SMC resamples the particles based on a learned value
function V (xo. ) (Section 6.1). This resampling helps recover from
early mistakes and maintain diversity among plausible particles ,
which is particularly important for complicated sketches. In Fig-
ure 9 we show an example of this process.

(a) Particles (c) Resampling

(b) Policy Module
worte 2452 ' .
(+Extrude) &

Fillet

Profile
(+Extrude)

_—

—0.62

—0.83 i’ '
) e

' — 041 —— .

Figure 9: We present an example of resampling using SMC. Af-
ter all particles pass through the policy module, the value network
assigns each of them a score. The SMC then resamples based on
these scores, shifting the distribution toward particles with higher
likelihood.

— 0.41

YI0MIBN Bnjep

Fillet

6.1. Value Function

We need a scoring function that evaluates how well a candidate
CAD program matches the target sketch. Since different execution
orders of CAD operations can produce the same final B-rep, this
value function must be order-invariant.

Previous works on CAD generation often evaluate their re-
sults by computing the Chamfer Distance between the gener-
ated B-rep and inputs such as voxels [UyCS*22, KSA23], point
clouds [GLP*22, ZHFL23,LCP*24], or meshes [GXL13]. In con-
trast, directly comparing our generated B-rep with the input 3D
sketch is not meaningful. Such a comparison only reveals which

343
344
345

346
347
348
349
350
351
352
353

354

355
356
357
358
359
360
361
362
363
364

365

366
367
368
369
370
371
372

373

374

strokes have been explained by the program. But many construc-
tion lines are not intended to appear in the final shape, and the input
sketch itself is sparse.

Instead, we evaluate the generation process by computing the
Chamfer distance between the generated B-rep and the ground-
truth B-rep. However, during inference, the ground-truth shape is
not available, making direct computation infeasible. To address
this, we train a neural network that takes the current graph G; as
input and learns to predict a proxy for the Chamfer distance. This
learned value function enables geometry-aware scoring of partial
CAD programs without the ground truth during generation.

6.1.1. Immediate Value Estimation

A straightforward approach is to train our neural network to predict
the Chamfer distance Sy of the current B-rep. However, as Cham-
fer distance is correlated with the volume of the shapes, operations
that create larger volumes (e.g., ext rude, which produces a solid
block) might have greater impacts on the Chamfer distance than op-
erations that modify smaller features (e.g., £i11let, which rounds
edges). In our experiments, we observe that the SMC sampling pro-
cess with this immediate value estimation tend to favor samples that
prioritized ext rude operations, leading to a greedy search behav-
ior.

6.1.2. Expected Value Estimation

A more principled way to evaluate a partial CAD program is by
estimating the quality of its expected final output. Inspired by prior
works such as AlphaGo [SHM™16,SSS*17], we construct a search
tree that explores possible future executions from the current pro-
gram state (Figure 10). The value of a partial program is then
computed by aggregating the values of all possible completions,
weighted by their probabilities. We define the value of a state s as:

V(s)= Z P(als)V(s))

acA

where:

e V(s) is the value of the current state.

submitted to EUROGRAPHICS 2026.



375
376
377
378
379

380
381
382
383
384

385
386
387
388
389
390
391
392

393
394

395

396

397
398
399
400
401
402
403
404
405
406
407

409

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches 7of 18
s Compute
se.‘éﬁﬁin Execution Value ~ Chamfer Distance
Termination
Prob: 0.5 Q i ' V(s) = X, Plals Prob: 0.08 .
A T
Subtract | pop: 035 Prob: 0.62
Empty Program Prob: 0.6 povors N
BN
vvvvvv ] —— Fillet ‘ { Compute
Prob: 03 % X { """ Prob:03 | S T Chamfer Distance
Fillet Ty | L. Termination
Prob: 0.4 —_— Prob: 0.25
[Prob:07 - .

Figure 10: We build a tree from a a partial CAD program by simulating future actions. Each branch represents a possible choice by the
policy module. Non-terminal states’ values are based on their child nodes weighted by probabilities. Terminated states are evaluated using

Chamfer distance to the ground truth shape.

A is the set of possible operations from s.

P(als) is the probability of writing program a from state s.

s’ is the next state obtained by applying a to s.

V(s') is the value of the next state, or the Chamfer distance if it
is an termination state.

However, constructing a complete tree that explores all possible
executions of the system is computationally infeasible. We approx-
imate this process using Monte Carlo Tree Search (MCTS), which
focuses exploration on high-impact branches. Implementation de-
tails of our MCTS algorithm are provided in Appendix D.

To train the value network, we use the search trees generated by
our MCTS procedure to construct a dataset that provides estimated
values for program states at various stages of execution. We adopt
the same graph encoder (detailed in Appendix B) to produce node
embeddings, then passed through a value decoder (Figure 8) to pre-
dict a scalar value representing the estimated quality of the current
state. We train the value network using a contrastive loss that en-
courages higher scores for better programs:

- S2))7

where S| and Sy are the predicted scores, y € {1,—1} indicates
which program is better, and m = 0.2 is the margin.

Lyalue = maX(O,m -y (Sl

7. Implementation
7.1. Dataset

We develop a novel method to generate noisy synthetic 3D sketches
that imitate human sketches (detailed in Appendix E) and prepare
two datasets using it. The first dataset (Figure 12 and Figure 14),
introduced by [HLMB22], consists of 1361 CAD program and 3D
sketch pairs and includes profile, extrude, and fillet op-
erations. Each program contains exactly 8 operations, and the re-
sulting sketches have an average of 78.6 strokes, with a minimum
of 35 and a maximum of 143 strokes. To increase diversity and
complexity, we procedurally generate a second dataset comprising
4000 CAD program and 3D sketch pairs (Figure 13 and Figure 15),
covering all four basic operations: profile, extrude, fil—-
let, and chamfer. Program lengths range from 3 to 15 opera-
tions, with an average of 9.2. The resulting sketches vary from 17

submitted to EUROGRAPHICS 2026.

410
411

412
413
414
415
416
417
418
419
420

421

422
423
424
425
426
427

428

429

430
431

433
434
435
436

437
438
439
440
441
442
443

strokes at the simplest end to 307 strokes at the most complex, with
an average of 122.3 strokes.

Both datasets are divided into 80% for training and 20% for val-
idation. They feature diverse designs (exampled in Figure 14, 15)
and differs in program length, program patterns, spatial relation-
ships between strokes, as well as in how feature lines and con-
struction lines are drawn. We train on these datasets jointly to high-
light generality. In Section 8, we present results from training both
separately and jointly (by randomly merging them into a single
combined dataset), demonstrating our system’s ability to generalize
across a wide range of sketching styles.

7.2. Network Training and Inference

We implement our neural networks in PyTorch Geometric and will
release the code upon acceptance. Training is performed on an
NVIDIA GeForce RTX 4090 GPU: policy networks train in ~2
hours, and the value network in ~10 hours. At inference time, our
system generates a CAD program ( 9 operations) in ~30 seconds
using 30 parallel particles in the SMC framework.

8. Results and Evaluation
8.1. Baseline Method : Order Based Reconstruction

We implemented a baseline algorithm that processes strokes in the
order they were drawn. In this approach, strokes are sequentially
added, and whenever they form a closed loop, the algorithm groups
them into a sketch loop. When such loops correspond to higher-
level entities (e.g., a cuboid), the algorithm generates the corre-
sponding sketch and extrude operations to construct the intended
geometry.

However, this approach faces two major challenges. First, artists
often draw in inconsistent order, sometimes revisiting earlier parts
of the sketch. Second, sketches frequently include construction
lines, which can form loops with feature lines. This algorithm often
mistakenly interpret these as valid sketches, resulting in errors. To
evaluate this method, we selected 100 short programs from Dataset
B (each containing only six operations). The baseline succeeded in



444
445

446

447
448
449
450
451
452
453
454

456
457
458
459
460

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

476

477
478
479
480
481
482
483
484
485
486
487

489
490
491
492
493
494
495

496

8of 18

generating only 1 out of 100 shapes, clearly illustrating its limita-
tions.

8.2. Baseline Method : Stroke Filtering as Preprocessing

Another baseline method we consider is a two-stage pipeline. The
first stage selects strokes that either appear in the final shape or in
intermediate shapes, since these strokes can help generate the entire
CAD generation process. Such strokes include both feature lines
and a subset of construction lines. Our objective is to use only these
selected strokes to predict the CAD program, thereby reducing the
burden on the network. Specifically, we train a network to perform
binary classification of strokes, separating those that are ever used
in the shape’s generation history (i.e present in intermediate shapes
or the final shape) from those that are not (i.e. construction lines
used solely for perspective correction). This classifier adopts the
same graph encoder as our main pipeline to compute node embed-
dings, followed by a multilayer perceptron (MLP) that operates on
the stroke nodes.

We evaluated this approach on 500 shapes sampled from
Dataset B. The preprocessing network achieved an accuracy of
86.2% in distinguishing between the two categories of lines. How-
ever, only 173/500 examples retained all the lines required to fully
generate the program. For the remaining 327 /500 examples, recov-
ering the correct program was difficult regardless of the generation
algorithm. This stroke pre-processing does not work well because
it is inherently challenging to determine which construction lines
are essential for the generation process in a single-shot prediction.
In contrast, our method (proposed in this work) addresses this chal-
lenge through an autoregressive formulation, where later predic-
tions can build on earlier ones, making it easier to capture the nec-
essary lines for program recovery. We provide example results of
predicting lines that are used in the shape’s generation history in
Figure 11.

8.3. Overall Performance

We train our network on the two datasets both separately and
jointly. Joint training on Dataset A and Dataset B enables broader
generalization, but it also introduces challenges due to stylistic in-
consistencies between the datasets. For example, Dataset B often
uses diagonal lines to denote profile planes, whereas Dataset A
does not (Figure 14, Figure 15). Such differences can confuse the
network, since identical operations are represented with different
visual cues. Nevertheless, our system remains capable of making
valid predictions by reasoning about underlying spatial relation-
ships rather than relying solely on dataset-specific patterns. This
indicates that the model learns to infer higher-level geometric in-
tent, contributing to its robustness.

To assess shape quality, we compute the Chamfer distance be-
tween the generated shape and the ground-truth shape in the vali-
dation set, using 300 uniformly sampled surface points. A gener-
ation is considered successful if the Chamfer distance is less than
1% of the bounding box diagonal of the ground truth shape. We
also present several failure cases and their underlying causes in Fig-
ure 16.

We observe that the value function often struggles to distinguish

497
498
499
500

501
502
503
504
505

506
507
508
509
510
511

512

513
514
515
516
517
518
519

520

521
522
523
524
525

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

Table 1: Top-3 results success rate (%) with different sampling
methods.

Value Function Dataset Dataset Joint
A B A +
B)
No Sampling / No Value Function 59.0% 67.0% 48.0%
Immediate Value Function 82.0% 89.0% 80.0%
MCTS based Value Function 82.0% 91.0% 82.5%

Table 2: Accuracy (%) for operation prediction and corresponding
strokes (or loops) selection across different dataset setups.

Task Type Dataset A Dataset B Joint (A +
B)

Profile 88.7% 94.2% 82.2%

Extrude 94.2% 97.4% 93.3%

Fillet 89.6% 99.6% 94.5 %

Chamfer / 82.7% /

Next Operation 99.7% 89.9% 92.1%

fine-grained shape differences, particularly those involving small
features such as fillet or chamfer operations. To mitigate this
limitation, our system returns the top-3 predicted shapes, ranked by
the value function, and allows users to select their preferred result.

In Table 1, we compare the effectiveness of three sampling
strategies: (1) a baseline without resampling, (2) SMC sampling
with resampling based on an immediate value function (Section
6.1.1), and (3) SMC sampling guided by a value function trained to
estimate the expected final outcome (Section 6.1.2).

The value function trained on expected final values does not
provide any improvement over the immediate value function on
Dataset A, whereas it shows a more noticeable benefit on Dataset B.
This is likely because all programs in Dataset A follow a fixed op-
eration sequence. As a result, greedy strategies that prioritize high
impact operations like extrusion do not lead to incorrect programs.

8.4. Accuracy on Individual Tasks

We further assess the accuracy of individual modules (Table 2),
covering operation prediction and stroke selection for profile,
extrude, fillet, and chamfer. Chamfer accuracy is not re-
ported for Dataset A, since it contains no chamfer operations, and
is also omitted for joint training, as the results are identical to those
of Dataset B. A prediction is considered correct only if all corre-
sponding strokes (or loops) are selected.

8.5. Ablation Study: Graph Design

We examine our graph design by removing different graph edge
types and record the network’s performance on profile, ex—
trude and fillet stroke selections on Dataset A. We show in
Table 3, that removing any of these graph edges would lead to a
decrease in certain tasks. Additionally, we experiment with a graph

submitted to EUROGRAPHICS 2026.



526
527
528
529

530

531
532
533
534

535
536
537
538
539
540
541
542
543
544

545

546
547
548
549
550
551
552

553
554
555

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

Table 3: Ablation study of graph design. We report average accu- 5%

racy for Profile, extrude, and £illet selection tasks. 557

558

Edge Type Removed Profile Extrude Fillets59
Full Graph 88.7 94.2 89.6 °°
Stroke-intersect-Stroke 86.7% 65.1% 82.1%
Loop-perpendicular-Loop 81.1% 84.4% 87.7% °*
Loop-contains-Loop 69.3% 93.6% 89.2%

Stroke-to-Loop 82.3% 13.5% 85.6% s63
Stroke Order 67.2% 92.8% 70.4%

No Loop Nodes 45.6% / / oo

565
566

Table 4: Top-3 results success rate (%) on Dataset B across differ- 567

ent program lengths and numbers of SMC particles. 568

569

Particles <5Step 5-7Step 8-10Step 11-15 Stepswo
30 Particles 99.2% 94.4% 82.9% 38.5%

50 Particles 99.2% 95.1% 83.9% 48.0% 571
100 Particles ~ 99.2% 95.1% 87.4% 52.1%

572
573

574
that contains only stroke nodes. In this setting, the profile pre- g5

diction is reformulated as identifying all strokes that form the pro- 54
file region. The result of this variant is shown in the last row of the 577
table. 578

579
580
581
Our system’s performance declines as the length of the target CAD sg»
program increases. Also larger number of particles during the SMC g3
sampling process may improve results. We quantify this relation- sgs
ship using Dataset B (which has varying program length) in table 4.

8.6. Impact of Program Length and Sampling Budget

585
Our system performance degrades significantly for programs sge
longer than 10 steps, and especially beyond 12. These failure cases sg7
often involve missing smaller geometric features, such as £il- sgs
lets or chamfers (Figure 16). This degradation is likely due to sse
several factors. First, longer programs correspond to sketches with sgo
more strokes, which inherently increases difficulty of the genera- sos
tion process. Second, autoregressive models are more prone to er-
rors as sequence length increases. Third, the value estimation func-
tion performs less reliably on complicated densely sketches, which
makes it hard to identify the 3 most promising final outputs.

592
593
594
595
596
8.7. Results Comparison with Free2CAD 597

. . Lo 598
We demonstrate that incorporating construction lines enables our
599

method to reconstruct shapes that previous approaches, such as

Free2CAD [LPBM22], fail to capture. The limitation arises be- 600
cause relying solely on feature lines makes it difficult to recover o
the complex sequence of additive and subtractive operations. Mul- o0
tiple edits may occur in the same spatial region and their traces are
often absent in the final geometry. 603

In Figure 17, we highlight six examples taken from the 604
Free2CAD supplemental material where the system was unable 605
to generate the correct shapes. Since the original sketches contain eos

submitted to EUROGRAPHICS 2026.

90f 18

only feature lines, important details are lost and the resulting re-
constructions deviate from the intended design. To address this, we
redrew the sketches with construction lines and applied our method.
The inclusion of construction lines provides additional cues about
intermediate structures in the modeling process, allowing our ap-
proach to accurately interpret them and produce final shapes that
more closely match the sketch’s intent.

8.8. Evaluating on Synthetic 2D Sketches

We qualitatively evaluate our method on synthetic 2D sketch
drawings that are lifted to 3D to simulate noisy 3D sketches.
Specifically, we first sample a subset of examples from
CAD2Sketch [HLMB22], which generates 2D sketches from 3D
shapes. We then uplift these sketches into 3D space using a
symmetry-based algorithm [HGSB22]. As shown in Figure 18, our
method successfully reconstructs the intended shapes.

8.9. User Study: Creating 3D Shape from 2D Sketches

We further evaluated our method on real-world 2D drawings.
Specifically, we invited three students with limited prior CAD de-
sign experience and one student designer proficient in CAD design
to create 2D sketches using an existing drawing interface equipped
with a 3D lifting algorithm [WB25, HGSB22] (Appendix F). The
resulting 3D sketches were then processed with CADrawer to gen-
erate 3D B-rep shapes. Each participant first received a brief 15-
minute tutorial on the UI system (Appendix F) and on perspec-
tive drawing. They were then asked to produce three sketches of
their choice in 2D space, which the system automatically uplifted
into 3D sketches. While the participants exhibited diverse sketch-
ing habits, most of them used construction lines, consistent with
our assumption (further discussed in Appendix G).

On average, participants spent about 21 minutes completing all
three sketches. Students with limited prior CAD design experience
found perspective drawing increasingly difficult as the sketches
grew more complex, whereas the proficient student designer found
our UI more intuitive and convenient. We then applied CADrawer
to translate these 3D sketches into CAD programs, with the results
presented in Figure 19.

We used a 5-point scale (1 = very unsatisfied/very different, 5
= very satisfied/highly similar) to evaluate participant feedback.
Overall, participants reported a high level of satisfaction with both
the sketching process and the automatic 3D lifting. The average
similarity score was 4.6/5, indicating that the generated shapes
were generally considered close to the original sketches. The sys-
tem also received an average ease-of-use rating of 4.2/5. All par-
ticipants with limited CAD experience agreed that it made creating
3D shapes easier than working directly with CAD software. In con-
trast, the proficient student designer found direct modeling in CAD
software easier and more intuitive.

8.10. User Study: Expert Manual Shape Reconstruction

We dalso conducted a second user study to directly compare hu-
man experts in reconstructing 3D shapes from sketch drawing with
the automated generation process of CADrawer. We invited three



607
608
609
610
611

612
613
614
615
616
617
618
619

620
621
622
623
624
625
626

627
628
629
630

631

632
633
634
635
636
637
638
639

640
641
642
643
644
645

646
647
648
649
650
651
652
653

654

655
656
657
658
659

100f 18

student designers from a prestigious design school, each profi-
cient in CAD software and experienced in manual modeling work-
flows. In this study, participants were provided with six 3D sketches
and asked to reconstruct the corresponding B-rep shapes manually,
without the assistance of our system.

During the process, we observed that participants often strug-
gled with sketches that involved complex modeling steps, particu-
larly those requiring multiple subtraction operations. Overlapping
strokes frequently created visual ambiguities, making it difficult to
determine the intended sequence of operations. Participants also
encountered challenges in accurately interpreting perspective from
the sketches, whereas CADrawer automatically extracts precise ge-
ometric parameters from strokes.

At the same time, human designers demonstrated strong contex-
tual reasoning and an ability to infer design intent beyond what was
explicitly drawn. This often allowed them to avoid certain mistakes
made by our system, such as misinterpreting partially drawn or am-
biguous strokes. Notably, they could still infer correct parameters
even when stroke values extended beyond the thresholds used by
our algorithm.

We present a side-by-side comparison of the manually created
shapes and the results generated by our system in Figure 20. This
comparison illustrates the complementary strengths of expert hu-
man reasoning and automated CAD generation.

9. Conclusion

We introduce CADrawer, a new framework for generating CAD
programs from 3D sketches.To the best of our knowledge, we are
the first to leverage sketch construction lines as additional infor-
mation for recovering intermediate CAD operations, which allows
us to successfully manage complex sketches that challenged previ-
ous approaches. But construction lines bring additional clutter and
ambiguity, which we handle with a combination of autoregressive
prediction and Sequential Monte Carlo exploration.

A key challenge that remains is the lack of large-scale datasets
of real-world sketch drawings and their corresponding B-rep pro-
grams. Acquiring such data is difficult due to the manual effort re-
quired. This limitation constrains the diversity of training samples
and hinders the model’s ability to generalize across varying sketch-
ing styles and modeling workflows.

One promising direction is to adopt a bootstrapped program
synthesis strategy, as explored in [JWR22, EWN*21, JGMR23],
where two networks are jointly trained to synthesize programs
from sketches and generate human-like sketches from programs at
the same time. This approach enables training an initial inference
model on a small dataset, executing it to generate synthetic sketch-
program pairs, and iteratively refining both the model and dataset
via self-supervised learning.

References

[CF25] CHEREDDY S., FEMIANI J.: Sketchdnn: Joint continuous-
discrete diffusion for CAD sketch generation. In Proceedings of the 42nd
International Conference on Machine Learning (ICML) (2025), PMLR,
pp. 1-17. 17 pages, 63 figures. URL: https://arxiv.org/abs/
2507.11579,d01:10.48550/arXiv.2507.11579. 3

660
661

662
663
664
665

666
667
668

669
670
671

673
674
675
676

677
678
679

680
681
682
683
684
685
686
687

688
689
690

691
692
693

694
695
696
697

698
699
700
701
702
703
704

705
706

707
708
709
710

711
712
713
714

715
716
77
718

719
720
721
722
723

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

[CLS19] CHEN X., L1U C., SONG D.: Execution-guided neural program
synthesis. /CLR (2019). Presented at ICLR 2019. 3

[CRN*22] COLLIGAN A. R., ROBINSON T. T., NoLAN D. C., HuA
Y., CA0 W.: Hierarchical cadnet: Learning from b-reps for machining
feature recognition. Computer-Aided Design 147 (June 2022). doi:
10.1016/j.cad.2022.103226.3

[CSMS13] CORDIER F., SEO H., MELKEMI M., SAPIDIS N. S.: Infer-
ring mirror symmetric 3d shapes from sketches. Computer Aided Design
45,2 (2013). 3

[DIP*18] DU T., INALAJ. P., PU Y., SPIELBERG A., SCHULZ A., RUS
D., SOLAR-LEZAMA A., MATUSIK W.: Inversecsg: Automatic conver-
sion of 3d models to csg trees. ACM Transactions on Graphics (Proc.
SIGGRAPH Asia 37,6 (2018). 3

[ENP*19] ELLIS K., NYE M., PU Y., SosA F., TENENBAUM J.,
SOLAR-LEZAMA A.: Write, execute, assess: Program synthesis with
arepl. ICML (June 2019). doi:10.48550/arXiv.1906.04604.
3

[ERSLT18] ELLIS K., RITCHIE D., SOLAR-LEZAMA A., TENENBAUM
J. B.: Learning to infer graphics programs from hand-drawn images.
NeurIPS (July 2018). doi:10.48550/arXiv.1707.09627.3

[EWN*21] ELLIS K., WONG C., NYE M., SABLE-MEYER M.,
MORALES L., HEWITT L., CARY L., SOLAR-LEZAMA A., TENEN-
BAUM J. B.: Dreamcoder: Bootstrapping inductive program synthesis
with wake-sleep library learning. In Proceedings of the ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Onward!) (2021), ACM, pp. 835—
850. URL: https://doi.org/10.1145/3486607.3486750,
doi:10.1145/3486607.3486750. 10

[GHL*20] GRYADITSKAYA Y., HAHNLEIN F., Liu C., SHEFFER A.,
BOUSSEAU A.: Lifting freehand concept sketches into 3d. 7OG 39, 6
(Nov 2020). do1:10.1145/3414685.3417851. 2,3

[GLP*22] GUOH.,LiuS.,PANH.,LIU Y., TONG X., GUO B.: Com-
plexgen: Cad reconstruction by b-rep chain complex generation. ACM
Transactions on Graphics (SIGGRAPH) 41, 4 (2022). 3,6

[GSH*19] GRYADITSKAYA Y., SYPESTEYN M., HOFTHZER J. W.,
PONT S., DURAND F., BOUSSEAU A.: Opensketch: A richly-annotated
dataset of product design sketches. ACM Transactions on Graphics
(Proc. SIGGRAPH Asia) (2019). 2

[GXL13] Gao S., Xu X., LIN C.: Topology reconstruction for
b-rep modeling from 3d mesh in reverse engineering applications.
Computer-Aided Design 45, 2 (2013), 496-507. URL: https:
//www.researchgate.net/publication/258712788_
Topology_Reconstruction_for_B-Rep_Modeling_from__
3D_Mesh_in_Reverse_Engineering_Applications,
doi:10.1016/7j.cad.2012.10.010.6

[Hen12] HENRY K.: Drawing for product designers. Laurence King
Publishing, 2012. 1

[HGSB22] HAHNLEIN F., GRYADITSKAYA Y., SHEFFER A,
BOUSSEAU A.: Symmetry-driven 3d reconstruction from concept
sketches. SIGGRAPH (July 2022). doi:10.1145/3528233.
3530723.2,3,9,15,17

[HKYM16] HUANG H., KALOGERAKIS E., YUMER E., MECH R.:
Shape synthesis from sketches via procedural models and convolutional
networks. IEEE Transactions on Visualization and Computer Graphics
(TVCG) 22,10 (2016), 1. 3

[HLMB22] HAHNLEIN F., L1 C., MITRA N. J., BOUSSEAU A.:
Cad2sketch: Generating concept sketches from cad sequences. ACM
Transactions on Graphics (TOG) 41 (November 2022), 1-18. doi:
10.1145/3550454.3555488.1,7,9,15

[JGMR23] JoNES R. K., GUERRERO P., MITRA N. J., RITCHIE D.:
Shapecoder: Discovering abstractions for visual programs from unstruc-
tured primitives. arXiv preprint arXiv:2305.05661 (2023). Presented
at SIGGRAPH 2023. URL: https://arxiv.org/abs/2305.
05661,d01:10.48550/arXiv.2305.05661. 10

submitted to EUROGRAPHICS 2026.


https://arxiv.org/abs/2507.11579
https://arxiv.org/abs/2507.11579
https://arxiv.org/abs/2507.11579
https://doi.org/10.48550/arXiv.2507.11579
https://doi.org/10.1016/j.cad.2022.103226
https://doi.org/10.1016/j.cad.2022.103226
https://doi.org/10.1016/j.cad.2022.103226
https://doi.org/10.48550/arXiv.1906.04604
https://doi.org/10.48550/arXiv.1707.09627
https://doi.org/10.1145/3486607.3486750
https://doi.org/10.1145/3486607.3486750
https://doi.org/10.1145/3414685.3417851
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://www.researchgate.net/publication/258712788_Topology_Reconstruction_for_B-Rep_Modeling_from_3D_Mesh_in_Reverse_Engineering_Applications
https://doi.org/10.1016/j.cad.2012.10.010
https://doi.org/10.1145/3528233.3530723
https://doi.org/10.1145/3528233.3530723
https://doi.org/10.1145/3528233.3530723
https://doi.org/10.1145/3550454.3555488
https://doi.org/10.1145/3550454.3555488
https://doi.org/10.1145/3550454.3555488
https://arxiv.org/abs/2305.05661
https://arxiv.org/abs/2305.05661
https://arxiv.org/abs/2305.05661
https://doi.org/10.48550/arXiv.2305.05661

724
725
726
727

728
729
730
731

732
733
734
735

737
738
739
740
741

742
743
744
745
746
747

748
749

750
751
752

753
754
755
756
757

758
759
760
761

762

764

765
766
767

768
769
770

771
772
773

774
775
776
777

778
779
780

781
782
783

784
785
786

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

[JHC*21] JONES B., HILDRETH D., CHEN D., BARAN 1., KIM V. G.,
SCHULZ A.: Automate: A dataset and learning approach for automatic
mating of cad assemblies. ACM Transactions on Graphics (TOG) 40

(December 2021), 1-18. doi:10.1145/3478513.3480562. 3
[JNK*23] JONES B., NOECKEL J., KODNONGBUA M., BARAN 1.,
SCHULZ A.: B-rep matching for collaborating across cad systems.

ACM Transactions on Graphics 42 (August 2023). doi:10.1145/
3592125.3

[JWR22] JoNES R. K., WALKE H., RITCHIE D.: Plad: Learning
to infer shape programs with pseudo-labels and approximate distribu-
tions. arXiv preprint arXiv:2011.13045 (2022). Presented at CVPR
2022. URL: https://arxiv.org/abs/2011.13045,doi:10.
48550/arXiv.2011.13045. 10

[KMP*18] KALYAN A., MOHTA A., POLOZOV O., BATRA D., JAIN
P., GULWANI S.: Neural-guided deductive search for real-time pro-
gram synthesis from examples. arXiv (April 2018). Published in ICLR
2018, International Conference on Learning Representations. doi:
10.48550/arXiv.1804.01186.3

[KSA23] KUZNETSOV P., SPITSYN A., ARUTYUNOV R.: Simplification
of 3d cad model in voxel form for mechanical parts using a gan-based
network.  Computer-Aided Design 162 (2023). URL: https:
//www.sciencedirect.com/science/article/pii/

50010448523001094, doi:10.1016/7j.cad.2023.103461.
6
[LB25] Liu C., BESSMELTSEV M.: State-of-the-art report in sketch pro-

cessing. Computer Graphics Forum (2025). 2

[LCLT08] LiulJ., Cao L., L1 Z., TANG X.: Plane-based optimization
for 3d object reconstruction from single line drawings. IEEE Transaction
on Pattern Analysis Machine Intelligence 30, 2 (2008), 315-327. 3

[LCP*24] LIU Y., CHEN J., PAN S., COHEN-OR D., ZHANG H.,
HUANG H.: Split-and-fit: Learning b-reps via structure-aware voronoi
partitioning. ACM Transactions on Graphics (TOG) 43,4 (2024), 108:1—
108:13. URL: https://doi.org/10.1145/3658155, doi:
10.1145/3658155. 6

[LGG*17] LIN T.-Y., GOYAL P., GIRSHICK R., HE K., DOLLAR P.:
Focal loss for dense object detection. arXiv preprint arXiv:1708.02002
(2017). Presented at ICCV 2017. URL: https://arxiv.org/abs/
1708.02002,d0i:10.48550/arXiv.1708.02002. 5

[LOWS23] Liu Y., OBUKHOV A., WEGNER J. D., SCHINDLER K.:
Point2cad: Reverse engineering cad models from 3d point clouds. CVPR
(December 2023). doi:10.48550/arXiv.2312.04962. 3

[LPBM20] L1 C., PAN H., BOUSSEAU A., MITRA N. J.: Sketch2cad:
Sequential cad modeling by sketching in context. 7TOG 39, 6 (Nov 2020).
doi:10.1145/3414685.3417807.1,2,3,4

[LPBM22] L1 C., PAN H., BOUSSEAU A., MITRA N. J.: Free2cad:
Parsing freehand drawings into cad commands. 70G 41, 4 (July 2022).
doi:10.1145/3528223.3530133.1,2,3,4,9,14,17

[LS96] LipsoN H., SHPITALNI M.: Optimization-based reconstruction
of a 3d object from a single freehand line drawing. Computer-Aided
Design 28, 8 (1996). 3

[LWJ*22] LAMBOURNE]J. G., WILLIS K., JAYARAMAN P. K., ZHANG
L., SANGHI A., MALEKSHAN K. R.: Reconstructing editable prismatic
cad from rounded voxel models. In SIGGRAPH Asia Conference Papers
(2022). 3

[INGDGA*16] NISHIDA G., GARCIA-DORADO 1., G. ALIAGA D.,
BENES B., BOUSSEAU A.: Interactive sketching of urban procedural
models. ACM Transactions on Graphics (Proc. SSIGGRAPH) (2016). 3

[PCV16] PLUMED R., COMPANY P., VARLEY P. A.: Detecting mirror
symmetry in single-view wireframe sketches of polyhedral shapes. Com-
puters & Graphics 59 (2016), 1-12. 3

[PMKB23] PUHACHOV I., MARTENS C., KRY P. G., BESSMELTSEV
M.: Reconstruction of machine-made shapes from bitmap sketches.
ACM Transactions on Graphics (Proc. SSIGGRAPH Asia) 42, 6 (2023). 3

submitted to EUROGRAPHICS 2026.

787
788
789
790

®

791
792
793

794
795
796
797

798
799
800
801
802
803
804
805

806
807
808

809
810
811
812

813
814
815
816
817

818
819
820
821
822
823
824

825
826
827
828

829
830
831
832

833
834
835
836

837
838
839
840

841
842
843
844
845

846
847

848
849
850

110f 18

[RDM*24] RUKHOVICH D., DUPONT E., MALLIS D., CHERENKOVA
K., KACEM A., AOUADA D.: Cad-recode: Reverse engineering cad
code from point clouds. arXiv preprint arXiv:2412.14042 (2024).
arXiv:2412.14042,doi:10.48550/arXiv.2412.14042.3

[RGJ*23] RITCHIE D., GUERRERO P., JONES R. K., MITRA N. J.,
ScHuLz A., WILLIS K. D. D., Wu J.: Neurosymbolic models for
computer graphics. Computer Graphics Forum 42,2 (2023), 545-568. 2

[SGL*18] SHARMA G., GOYAL R., L1U D., KALOGERAKIS E., MAJI
S.: Csgnet: Neural shape parser for constructive solid geometry. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2018). 3

[SHM*16] SILVER D., HUANG A., MADDISON C. J., GUEZ A., SIFRE
L., DRIESSCHE G. V. D., SCHRITTWIESER J., ANTONOGLOU I., PAN-
NEERSHELVAM V., LANCTOT M., DIELEMAN S., GREWE D., NHAM
J., KALCHBRENNER N., SUTSKEVER 1., LILLICRAP T., LEACH M.,
KAVUKCUOGLU K., GRAEPEL T., HASSABIS D.: Mastering the game
of go with deep neural networks and tree search. Nature 529, 7587
(2016),484-489. URL: https://www.nature.com/articles/
naturel6961,doi:10.1038/naturel6961. 6

[SKSK09] ScHMIDT R., KHAN A., SINGH K., KURTENBACH G.: An-
alytic drawing of 3d scaffolds. In ACM transactions on graphics (Proc.
SIGGRAPH Asia) (2009), vol. 28. 2,3

[SLK*20] SHARMA G., L1iu D., KALOGERAKIS E., MAIJI S., CHAUD-
HURI S., MECH R.: Parsenet: A parametric surface fitting network for
3d point clouds. In Proc. European Conference on Computer Vision
(ECCV) (2020). 3

[SLX*25] SuNY.,LiJ.,XUZ.,ZHANG]J., L1Uu X., ZHANG D., LU G.:
Sketch2seq: Reconstruct CAD models from feature-based sketch seg-
mentation. IEEE Transactions on Visualization and Computer Graph-
ics 31, 10 (Oct. 2025), 8214-8230. doi:10.1109/TVCG.2025.
3566544. 1,2,3,4,17

[SSS*17] SILVER D., SCHRITTWIESER J., SIMONYAN K.,
ANTONOGLOU 1., HUANG A., GUEZ A., HUBERT T., BAKER
L., LAT1 M., BOLTON A., CHEN Y., LILLICRAP T., Hul F., SIFRE L.,
DRIESSCHE G. V. D., GRAEPEL T., HASSABIS D.: Mastering the game
of go without human knowledge. Nature 550, 7676 (2017), 354-359.
URL: https://www.nature.com/articles/nature24270,
doi:10.1038/nature24270. 6

[Sto08] STORER I.: Reflecting on professional practice : capturing an in-
dustrial designer’s expertise to support the development of the sketching
capabilities of novices. Design and Technology Education: An Interna-
tional Journal 10, 1 (May 2008), 54-72. 1

[TLS*19] TIAN Y., Luo A., SUN X., ELLIS K., FREEMAN W. T.,
TENENBAUM J. B., WU J.: Learning to infer and execute 3d shape
programs. arXiv (January 2019). Presented at ICLR 2019. doi:
10.48550/arXiv.1901.02875.3

[UyCS*22] Uy M. A., YU CHANG Y., SUNG M., GOEL P., LAM-
BOURNE J., BIRDAL T., GUIBAS L.: Point2cyl: Reverse engineering
3d objects from point clouds to extrusion cylinders. CVPR (June 2022).
doi:10.48550/arXiv.2112.09329. 6

[WB25] WEIJ., BOUSSEAU A. (Eds.):. A Blender Add-on for 3D Con-
cept Sketching (2025), ACM/EG Expressive Symposium - Posters and
Demos. URL: http://www-sop.inria.fr/reves/Basilic/
2025/WB25. 2,9,17,18

[WJC*22] WILLIS K. D., JAYARAMAN P. K., CHU H., TIAN Y., LI
Y., GRANDI D., SANGHI A., TRAN L., LAMBOURNE J. G., SOLAR-
LEZAMA A., MATUSIK W.: Joinable: Learning bottom-up assembly of
parametric cad joints. CVPR (April 2022). doi:10.48550/arXiv.
2111.12772.3

[WXW18] Wu Q., XU K., WANG J.: Constructing 3d csg models from
3d raw point clouds. Computer Graphics Forum 37,5 (2018). 3
[WXZ21] Wu R., X1A0 C., ZHENG C.: Deepcad: A deep genera-

tive network for computer-aided design models. /CCV (October 2021).
doi:10.48550/arXiv.2105.09492. 3


https://doi.org/10.1145/3478513.3480562
https://doi.org/10.1145/3592125
https://doi.org/10.1145/3592125
https://doi.org/10.1145/3592125
https://arxiv.org/abs/2011.13045
https://doi.org/10.48550/arXiv.2011.13045
https://doi.org/10.48550/arXiv.2011.13045
https://doi.org/10.48550/arXiv.2011.13045
https://doi.org/10.48550/arXiv.1804.01186
https://doi.org/10.48550/arXiv.1804.01186
https://doi.org/10.48550/arXiv.1804.01186
https://www.sciencedirect.com/science/article/pii/S0010448523001094
https://www.sciencedirect.com/science/article/pii/S0010448523001094
https://www.sciencedirect.com/science/article/pii/S0010448523001094
https://www.sciencedirect.com/science/article/pii/S0010448523001094
https://www.sciencedirect.com/science/article/pii/S0010448523001094
https://doi.org/10.1016/j.cad.2023.103461
https://doi.org/10.1145/3658155
https://doi.org/10.1145/3658155
https://doi.org/10.1145/3658155
https://doi.org/10.1145/3658155
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1708.02002
https://doi.org/10.48550/arXiv.1708.02002
https://doi.org/10.48550/arXiv.2312.04962
https://doi.org/10.1145/3414685.3417807
https://doi.org/10.1145/3528223.3530133
http://arxiv.org/abs/2412.14042
https://doi.org/10.48550/arXiv.2412.14042
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/TVCG.2025.3566544
https://doi.org/10.1109/TVCG.2025.3566544
https://doi.org/10.1109/TVCG.2025.3566544
https://www.nature.com/articles/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.48550/arXiv.1901.02875
https://doi.org/10.48550/arXiv.1901.02875
https://doi.org/10.48550/arXiv.1901.02875
https://doi.org/10.48550/arXiv.2112.09329
http://www-sop.inria.fr/reves/Basilic/2025/WB25
http://www-sop.inria.fr/reves/Basilic/2025/WB25
http://www-sop.inria.fr/reves/Basilic/2025/WB25
https://doi.org/10.48550/arXiv.2111.12772
https://doi.org/10.48550/arXiv.2111.12772
https://doi.org/10.48550/arXiv.2111.12772
https://doi.org/10.48550/arXiv.2105.09492

851
852
853
854
855
856

857
858
859
860

861
862
863

864
865
866

868
869

870
871
872

873
874
875
876

120f 18 SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

[WZW*24] WANG H., ZHAO M., WANG Y., QUAN W., YAN
D.-M.:  VQ-CAD: Computer-aided design model generation with
vector quantized diffusion. Computer Aided Geometric Design
111 (2024), 102327. URL: https://www.sciencedirect.
com/science/article/pii/S016783962400061X,
doi:10.1016/7.cagd.2024.102327. 3

[XCS*14] Xu B., CHANG W., SHEFFER A., BOUSSEAU A., MCCRAE
J., SINGH K.: True2form: 3d curve networks from 2d sketches via selec-
tive regularization. ACM Transactions on Graphics (SIGGRAPH 2014
Papers) 33 (2014). doi:10.1145/2601097.2601204. 3

[XPC*21] Xu X., PENG W., CHENG C.-Y., WILLIS K. D., RITCHIE
D.: Inferring cad modeling sequences using zone graphs. CVPR (April
2021). do1:10.48550/arXiv.2104.03900. 3

[YDSG21] Yu X., DIVERDI S., SHARMA A., GINGOLD Y.: ScaffoldS-
ketch: Accurate industrial design drawing in vr. In Proceedings of ACM
Symposium on User Interface Software and Technology (2021), UIST. 2

[YLT13] YANG L., L1u J., TANG X.: Complex 3d general object re-
construction from line drawings. In /EEE Int. Conference on Computer
Vision (2013). 3

[YZF*21] YANGL.,ZHUANGJ., FUH., WE1 X., ZHOU K., ZHENG Y.:
Sketchgnn: Semantic sketch segmentation with graph neural networks.
ACM Transactions on Graphics 40, 3 (2021). 4

[ZHFL23] ZONG Z., HE F., FAN R., L1U Y.: P2cadnet: An end-to-end
reconstruction network for parametric 3d cad model from point clouds.
CoRR abs/2310.02638 (2023). URL: https://arxiv.org/abs/
2310.02638. 6

submitted to EUROGRAPHICS 2026.


https://www.sciencedirect.com/science/article/pii/S016783962400061X
https://www.sciencedirect.com/science/article/pii/S016783962400061X
https://www.sciencedirect.com/science/article/pii/S016783962400061X
https://doi.org/10.1016/j.cagd.2024.102327
https://doi.org/10.1145/2601097.2601204
https://doi.org/10.48550/arXiv.2104.03900
https://arxiv.org/abs/2310.02638
https://arxiv.org/abs/2310.02638
https://arxiv.org/abs/2310.02638

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches 13 0of 18

(a)Stroke Cloud  (b)Ground Truth (c)Prediction (d)Diff (a)Stroke Cloud  (b)Ground Truth (c)Prediction
E o

&

Example A Example B

Figure 11: Stroke filtering as a preprocessing step. We show two sets of results where strokes are classified as either used in the generation
history or not. In both exampkes, some essential strokes are excluded, making the correct reconstructing infeasible.

m

Extrude Profile| Subtract|
—_— —_— —_—

g |||

Profile| - Subtract Fillet Fillet
— — —_— —_—

Figure 12: We show the entire process of generating a CAD program from Dataset A. For each step, the selected strokes (highlighted in red)
are shown at the top of the box, while the generated B-rep is shown at the bottom.

Terminate
—_—

L

NS =24

sl ) 4 5 <
> Profile " |Extrude] hamfef " | Profile Add Fillet " | Profile " |Subtract Fillet Terminates
sy —— — — — —_— _— —_— — —_— _—

Figure 13: We show the entire process of generating a CAD program from Dataset B. For each step, the selected strokes (highlighted in red)
are shown at the top of the box, while the generated B-rep is shown at the bottom.

Figure 14: We show eight results of CAD program generation from Dataset A. Each box contains one result, with the shape shown from two
different perspectives.

submitted to EUROGRAPHICS 2026.



14 of 18 SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

T | AR
= = 122 /,, = |
Program Program Program length = 7 Program length = 8 Program length = 9 Program length =10 Program length = 12

length =4  length =5

Figure 15: We present seven results of CAD program generation from Dataset B with varying program length. Each box contains one result,
with the shape shown from one or two different perspectives.

Early Termination Stroke Type error Doesn't select Fillet pair

3D Sketch Ground Truth  Our Result Failure Cause 3D Sketch Ground Truth  Our Result Failure Cause 3D Sketch Ground Truth  Our Result Failure Cause
Forget Fillet/Chamfer Arc is fitted as Straight Line Fillet edge length wrong

N8 W

3D Sketch Ground Truth  Our Result Failure Cause 3D Sketch Ground Truth  Our Result Failure Cause 3D Sketch Ground Truth ~ Our Result Failure Cause

i Cannot form a
Wrong Profile / Profile Signltoo weak valid extrusion face

ZTEB®R = B

Figure 16: We present six failure cases. In each box, we show the input 3D sketch, the ground truth, our generated result, and the incorrectly
selected strokes in the 3D sketch that led to the failure. Differences between our result and the ground truth are highlighted for clarity. The
most common failures involve misclassification of small features such as fillets or chamfers, as seen in the first row.

Feature Free2CAD Feature Free2CAD Feature Free2CAD
Line Only Result Line Only Result Line Only Result
Ground Truth @ U ’ Ground Truth Ground Truth @
" With With
With . . Our Result A . Our Result
Construction Ling O Result ' Construction Line Construction Line
A ~
Llfeatgr(;) FreReZCIAD Llfeatgr? FreReZCIAD Feature Free2CAD
ine Only esult ine Only esult Line Only Result
////\\\\
Ground Truth @' Ground Truth Ground Truth [ o ’
With - .
. . Our Result With With
Construction Line Construction Line Our Result Construction Line Our Result
B *3 i

Figure 17: We present six examples from Free2CAD [LPBM22]. In each box, the top row shows the ground truth shape, the input sketch for
Free2CAD, and the result generated by their method. The bottom row shows our redrawn sketch with construction lines and the corresponding
result produced by our system. Original figures copied from Free2CAD.

submitted to EUROGRAPHICS 2026.



SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

2D Sketch Uplifted 3D Sketch ~ Our Result

Perspective 1 Perspective 2

[ T
Ze L \ L\f\\p

2D Sketch  Uplifted 3D Sketch

Perspective 1

aof|

Perspective 2

Our Result

2D Sketch  Uplifted 3D Sketch ~ Our Result

Perspective 1 Perspective 2

(a)

Figure 18: We selected 2D sketches from a previous work [HLMB22], and then lift them back to 3D space using a previous method
[HGSB22]. We show the resulting shapes. Although the lifting approach may introduce minor issues—as seen in (c), where the circle is

(b)

(c)

distorted during the uplift process—our system can still make for valid interpretations based on the 3D sketch.

2D Drawing 3D Sketch  Generated Shape 2D Drawing 3D Sketch  Generated Shape 2D Drawing 3D Sketch Generated Shape
2D Drawing 3D Sketch Generated Shape 2D Drawing 3D Sketch Generated Shape 2D Drawing 3D Sketch Generated Shape

Figure 19: We invited three students with limited CAD design experience and one student proficient in CAD design to use our system. The

first row presents results from a non-proficient student, while the second row shows the work of the proficient student designer.

3D Sketch Our Result Designer1 Designer2

! - ' -
N

3D Sketch Our Result Designer1 Designer2

3D Sketch Our Result Designer1 Designer2

f3 | t ‘ t
F,\
<]
N

3D Sketch Our Result Designer1 Designer2

= =
 aw)
\ESe

3D Sketch Our Result Designer1 Designer2

3D Sketch Our Result Designer1 Designer2

il
L I

150f 18

Figure 20: Comparison between reconstructions by student designers and our method. Each student was given six 3D sketches and asked to
recreate the corresponding B-rep shapes. The designers performed well on simpler 3D sketches (first row), but encountered difficulties with
more complex ones (second row), where many lines appear cluttered especially for 3D sketches with multiple subt ract ions. In contrast,
our method can still handle these cases.

submitted to EUROGRAPHICS 2026.



877

878
879

880
881
882
883

884
885
886
887

888

889
890
891

892
893
894
895
896
897
898
899
900

901

902
903

16 of 18

Appendix A: Graph Node Feature Representation

We show the details of our graph node features in Figure 21. Both
stroke nodes and loop nodes contain 12 values.

For stroke nodes, the features include parametric information,
opacity, circular attributes, stroke type encoding, and a binary label.
There are five stroke types: straight lines, circular arcs, full circles,
ellipses, and free-form curves, as shown in Table 5.

Table 5: Node features for stroke nodes. Each stroke node has 12
values, including parametric and semantic features.

Stroke Type Parametric Function ~ Opacity Circular Features Stroke Type  Binary Label
Straight Line Start and End points Yes / 1 Oorl
Circular Arc Start and End points Yes Center 2 Oorl
Full Circle Center and Normal Yes Radius + [0,0] 3 Oorl
Ellipse Centerl and Center2 Yes Radius1, Radius2+ [0] 4 Oorl
Free-form Curve  Start and End points Yes Sampled Point 5 Oorl

For loop nodes, the first 11 values are padding, and the final value
is a binary label indicating whether the loop is used. We do not as-
sign additional features to loop nodes, as all necessary information
can be derived from the strokes that form them.

Graph Overview

@ stroke Nodes

(I T I ITI]
l’.svams(:or\OT

PaCY  Circular

Stroke Type

[1]
1

Binary Label

Features

Loop Nodes

LTI TTTTTTTTI9]

1 71

Binary Label

Paddings

Figure 21: Overview of graph node features. We represent each
stroke node using 12 values that include parametric geometry,
opacity, circular characteristics, stroke type encoding, and a binary
label. Loop nodes only contain a binary label in the final feature
slot, with the remaining dimensions zero-padded.

Appendix B: Graph Encoder Architecture

We present our graph encoder in Figure 22. All tasks in our frame-
work utilize this shared encoder to generate latent node embeddings
for both stroke and loop nodes in the graph.

Each node in the input graph is initialized with a 12-dimensional
feature vector. The output of the encoder is a 128-dimensional node
embedding. The encoder first applies a graph convolutional layer
to project the input features into a higher-dimensional space. This
is followed by three residual blocks, each consisting of two graph
convolutional layers with skip connections to preserve informa-
tion flow. Finally, we apply another concluding graph convolutional
layer is applied, followed by a ReLU activation to produce the final
node embeddings.

Appendix C: Parameter Extraction for CAD Operations

Given the strokes (or loops) associated with each operation, we ex-
tract the continuous values required to parameterize them:

904
905
906
907
908
909
9

0

911
912

914

916

917
918
919
920

921

923

924

925
926
927
928
929

930
931
932
933
934
935
936
937
938

939
940
941

942

943
944
945

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

e Profile: A loop node is selected. We first project all strokes in
the loop onto the best-fitting plane. Then, we extract one unique
point from each stroke, resulting in n points from n strokes. Two
points are considered identical if they lie within a threshold dis-
tance of 0.2 x max(stroke_length;,stroke_length,). These ex-
tracted points are used to define a plane by fitting with least
squares:

. 1L T 2
min ) <n p,-+d) In|| =1
nd ;3

where p; are the extracted points and n is the plane normal.

e Extrude: A loop node is selected as the base face. The extrusion
amount is computed as the Euclidean distance between the initial
and final loop planes:

Ocxtrude = Hloopend - lOOpstartH .

o Fillet: The fillet radius is directly extracted from the selected arc
stroke:

Ofillet = Farc-

To identify the corresponding B-rep edge, we find the edge
equidistant to the two endpoints of the fillet stroke.

e Chamfer: The chamfer amount is approximated using the length
of the selected edge:

eh for = Hpend_pStaftH
chamfer = s
V2

assuming a 45° chamfer angle. Similar to the fillet case, we lo-
cate the target B-rep edge as the one equidistant from the end-
points of the chamfer stroke.

Appendix D: Dataset Preparation using Monte Carlo Tree Search

To prepare the dataset for training our value function, we construct
trees that explore all possible execution paths of the system. Since
exhaustive enumeration is infeasible, we approximate this process
using Monte Carlo Tree Search (MCTS), which prioritizes explo-
ration along high-impact branches.

In our implementation, we first expand the tree until it reaches
100 leaf nodes, regardless of tree depth. Among these, we select the
top 20 leaf nodes with the highest probabilities, as they contribute
most significantly to the overall value. For the remaining nodes, we
perform four random executions to estimate their value. In contrast,
the top 20 nodes undergo full tree expansion to more accurately
evaluate their final result. This hierarchical search strategy reduces
the total number of branches while retaining the fidelity of value
estimation.

Empirically, we observe that programs with 8 operations typi-
cally result in 300-500 tree states, while programs with 12 opera-
tions yield approximately 1200-1800 states.

Appendix E: Algorithm to Simulating Human Drawings

We propose a novel method to perturb a clean 3D sketches in order
to simulate human-like drawing variations (Figure 23). The input
to our system is a set of polylines, each consisting of 10 sampled

submitted to EUROGRAPHICS 2026.



946
947

948
949
950
951

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968

969
970
971

972

973
974

SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

@
=
.‘\\ [ ) o~ 8 N
\, - ™
\ — X 5 £ — x
L@ z & z
N i
\\ O

17 of 18

> >
8 <t S [e0]

O f,! © O & S

e - x — S . — g —— Decoder
[o% [o% £S &

@® z z © z

4 &

O O

x3

Figure 22: Overview of the graph encoder architecture. The input is a heterogeneous graph G;, where stroke and loop nodes are initialized
with 12-dimensional features. The encoder applies graph convolutions to expand features to 128 dimensions through stacked layers and
residual blocks, followed by a ReLU activation before passing to the decoder for task-specific predictions.

Cleaned Perturbed Cleaned Perturbed

& 31 g P
&% (

| %{t’ ‘ . 744 X L‘éﬁg}

[l ) D NV ) ﬂ

¢ L % 5%

Cleaned Perturbed Cleaned Perturbed

M ﬁﬂ @ ,/’ﬂi\*?ﬂ
G @;‘3

Figure 23: 3D Sketch perturbation to simulate human sketching. We show examples of clean and perturbed 3D Sketch. Perturbations are
designed to emulate natural drawing variations such as jitter, overdrawing, stroke duplication, and deletion.

points. The output has the same structure but with added perturba-
tions.

Our perturbation process consists of two main steps. First, we
perform stroke type fitting (as described in the graph construction
section) to identify the type of each stroke. Second, we apply dif-
ferent perturbation strategies depending on the stroke type:

e Straight Lines and Free-form Curves: We simulate overdrawn
strokes by randomly extending both the start and end points by
a small fraction of the stroke length. We then perturb these end-
points in arbitrary directions, again by a fraction of the stroke
length. Each intermediate point along the stroke is also randomly
displaced by a small amount relative to the stroke length.

e Arcs: We first compute the arc’s parametric representation. We
then interpolate between the arc and a straight line connecting
its endpoints, randomly blending the two 3D lines. The start and
end points are also perturbed in arbitrary directions based on the
stroke length.

e Full Circles and Ellipses: We treat full circles as a special case
of ellipses where the two foci coincide and the major and mi-
nor radii are equal. We perturb these by randomly displacing the
center based on the radius, and randomly modifying the radius
itself. Additionally, we may repeat the entire stroke with high
probability to simulate overdrawing.

After applying per-stroke perturbations, we further perturb the
entire 3D Sketch by randomly removing 5% of the strokes and du-
plicating 10% of them.

Appendix F: Ul Interface : Taking 2D Sketch as Input

975

999

1000
1001

We build on the Ul system introduced in prior work [WB25], which 1002
incorporates a 2D sketch lifting algorithm [HGSB22]. We chose 1003

submitted to EUROGRAPHICS 2026.

this system due to our familiarity with it, though our method also
supports other forms of input that produce 3D sketches. The system
provides a Blender add-on that allows users to create 2D drawings
directly within the software, which are then automatically lifted
into 3D sketches. A demonstration is shown in Figure 24, with ad-
ditional details available in the original work [WB25].

Appendix G: Participants’ Usage of Construction Lines

We also observed that the participants exhibited diverse sketching
habits, particularly in their use of construction lines.

Intermediate Lines All participants, both proficient and non-
proficient in design, draw intermediate lines, as they found it easier
to outline basic shapes first and then refine them, rather than at-
tempting to draw the final feature lines directly (Figure 25). This
observation aligns with our assumption that intermediate construc-
tion lines are frequently used in human drawings and play a cru-
cial role in accurately recovering shapes. In contrast, prior works
[LPBM22, SLX*25] does not account for such lines.

Grid Lines and Projection Lines Participants demonstrated dif-
ferent approaches to using additional construction lines, such as
grid lines and projection lines, which do not appear in the inter-
mediate shapes but assist in correcting perspectives. Overall, the
student designer was more inclined to draw deliberate construc-
tion lines for perspective correction, whereas the other participants
were less consistent. For instance, one participant never used pro-
jection or grid lines, noting that the built-in UI grid was sufficient
for maintaining alignment. Others, however, found projection lines
helpful when aligning distant features. Additionally, one participant
observed that drawing larger shapes with long strokes made the
interface difficult to manipulate, as correcting perspective in such



18 of 18 SUBMISSION ID / CADrawer : Autoregressive CAD Generation from 3D Sketches

Tl

(b) Lifted Strokes in Blender Ul (c) 3D Sketch Generated

Figure 24: (a) illustrates the creation of a 2D sketch in Blender. (b) shows the corresponding lifted 3D sketch (in white) alongside the original
2D sketch (in black) within the user interface. (c) presents the final result of the lifted sketches in 3D space. Further details are provided in
the original work [WB25].

(a) Our User's Drawing Process (with intermediate shapes) (b) Sketgh with only
feature lines

Figure 25: We present an example of a participant’s drawing in (a). The participant first sketched the entire cuboid, then added a curve
to indicate the fillet operation. Then the user use projection lines to connect the edges of the cuboid. These project lines help the user to
maintain alignment between the two fillet curves. In contrast, (b) shows the same shape drawn with only the feature lines, which is not how
people typically sketch.

1004 cases was particularly challenging. While the use of construction
1005 lines provided some assistance, the process as a whole remained
1006 cumbersome.

submitted to EUROGRAPHICS 2026.



