
EUROGRAPHICS 2024 / N.N. and N.N.
(Editors)

Volume 0 (2024), Number 0

PossibleImpossibles: Exploratory Procedural Design of
Impossible Structures

Yuanbo Li1 and Tianyi Ma1 and Zaineb Aljumayaat2 and Daniel Ritchie1

1Brown University, USA
2Rhode Island School of Design, USA

Figure 1: Our method can generate different kinds of structures that appear to be impossible in the 3D space.

Abstract
We present a method for generating structures in three-dimensional space that appear to be impossible when viewed from
specific perspectives. Previous approaches focus on helping users to edit specific structures and require users to have knowledge
of structural positioning causing the impossibility. On the contrary, our system is designed to aid users without prior knowledge
to explore a wide range of potentially impossible structures. The essence of our method lies in features we call visual bridges that
confuse viewers regarding the depth of the resulting structure. We use these features as starting points and employ procedural
modeling to systematically generate the result. We propose scoring functions for enforcing desirable spatial arrangement of
the result and use Sequential Monte Carlo to sample outputs that score well under these functions. We also present a proof-of-
concept user interface and demonstrate various results generated using our system.

CCS Concepts
• Computing methodologies → Shape analysis;

1. Introduction

Impossible structures were initially conceptualized by mathe-
matician Roger Penrose and later gained widespread recognition
through the artworks of M.C. Escher during the 20th century. They
are characterized by small components that do not appear to vio-
late Euclidean geometry when viewed individually, but when com-
bined, create a structure that is impossible to be physically con-
structed [PP58, Fou]. These structures have gained recognition in
recent years through their incorporation in various applications and
designs in games and movies [Ale08, Gam, Nol10].

Creating impossible structures in three-dimensional space re-
quires a combination of technical expertise and artistic talent. Pre-
vious research has focused on providing users with tools to edit a

single structure and make it impossible [SDG03, WFY∗10, OF08,
SRC20]. However, as these approaches are goal-directed systems,
users need to know the exact structure they want to model before
using these systems and they need to have an understanding of the
specific structural positions and connections that cause the structure
to be deemed impossible.

We present a system that enables non-experts to explore differ-
ent potential structures that appear impossible in 3D space. The key
components of our resulting structures are special features we call
visual bridges, which are far-apart substructures in 3D space that
give the illusion of connectivity in 2D space. Our key insight is
that to confuse viewers regarding the three-dimensional depth of
the impossible structure, the system must construct a pathway that

submitted to EUROGRAPHICS 2024.

https://orcid.org/0009-0009-6270-3442
https://orcid.org/0000-0002-8253-0069


2 Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures

connects the separate components of the visual bridges. This path-
way serves as evidence that the components of visual bridges are,
in fact, far apart in 3D space, despite appearing to be connected in
2D space. Our system then combines the pathway and the visual
bridges to create a cycle in 2D space that suggests the components
of the visual bridges are both connected and far apart at the same
time.

We introduce a procedural language to generate the impossible
structure by adding one substructure at a time. A key challenge for
our approach is to create a sequence of randomized substructures
that projects as a cycle in 2D space. We tackle this challenge in
three steps. First, the system chooses visual bridges whose compo-
nents appear connected in 2D space but separate in 3D space. Then,
the system performs a random derivation from the components to
introduce randomness and allow the exploration of different po-
tential results. Lastly, the system introduces an algorithm to find
a pathway connecting the starting and ending components of the
visual bridges.

However, the previous algorithm does not guarantee the creation
of a desirable structure. The structural components might overlap
or occlude each other, making the impossibility difficult to discern.
To control the generation process, we propose scoring functions
that enforce desirable spatial arrangements of the structure. We
then use Sequential Monte Carlo sampling to steer our procedu-
ral model and select outputs that score well under these functions.
We demonstrate the effectiveness of our system by generating a va-
riety of impossible structures using different grammars and further
develop an interface to facilitate interaction with our model.

In summary, our main contributions are:

• The concept of visual bridges and a taxonomy of such substruc-
tures.

• A procedural model for generating impossible structures that uti-
lize visual bridges as starting points.

• A novel algorithm to find randomized pathways between arbi-
trary components for procedural grammars in 3D space.

• Scoring functions for characterizing visually pleasing impossible
structures.

Our code can be found at this link.

2. Related Works

Prior research has investigated impossible structures in both 2D and
3D space. However, all these methods are goal-directed, requiring
complicated user input to model specific impossible structures. Ad-
ditionally, these methods only demonstrate results on simple struc-
tures. These two limitations confine the utility of these systems for
designers with limited specialized knowledge aiming to produce
complicated results akin to scenes in the game Monument Valley
[Gam]. Our approach builds on some of the concepts from prior re-
search while adopting a novel strategy to address these challenges.

Modeling and Rendering Impossible Structures: Multiple ex-
isting works categorize impossible structures as a subset of view-
dependent structures [Rad99], and contribute to methods of com-
prehending, modeling, and rendering these structures. In the ini-
tial stages, research predominantly centered around classification

efforts [Cow77, Sug07] and finding the sources of impossibil-
ity, such as misinterpretations of depth, background, or surfaces
[Ter80, Kul83, Uri01]. Later methods introduce tool sets to help
users combine 3D components or transform an existing 3D object
to be viewed as an impossible structure in a 2D domain. These ap-
proaches typically rely on deforming components, applying linear
transformations, or modifying the facades of the input 3D compo-
nent to achieve the intended outcome [KK01,SDG03,OF08,Elb11,
SRC20]. Subsequent approaches simplify inputs to 2D points or
normal maps while also improving computation efficiency through
advanced optimization algorithms [Sug07, WFY∗10, LYY∗16].
However, even in these instances, users need to have a clear under-
standing of the desired connectivity and parallelism of the structure.
Our work builds upon these previous concepts by identifying depth
misconceptions as a cause of impossibility. But in contrast, our goal
is to assist non-expert users in exploring a range of possible impos-
sible structures, without understanding the underlying factors that
lead to structural impossibility.

Our approach, inspired by [Ern86,Ern06,LYY∗16,SRC20], em-
ploys distinct components to create the impossible structures. The
concept of the ’shifting gap’ from [LYY∗16] has been a signifi-
cant influence in shaping our methodology. However, unlike Lai’s
method, which dynamically alters an existing structure to hide its
disjointed parts from the observer, our technique starts with these
independent components as the starting point of our procedural de-
sign.

Prior research has predominantly showcased relatively simple
results with a single cause of impossibility. This single cause of im-
possibility can be used to categorize structures into different types
(refer to Appendix A for a classification of impossible structures).
In contrast, our exploratory approach allows the integration of mul-
tiple sources and types of impossibility.

To make impossible structures visually “impossible”, it is also
important to consider the colors applied to them. Tsuruno pro-
poses the method Mimetic Surface Color and Texture Adjustment
(MSCTA), which is designed to produce naturally shaded and ap-
propriately textured 3D impossible objects under physical light
sources [Tsu15]. We use this method in visualizing our results.

Procedural Languages: Procedural modeling is widely used to
create intricate and detailed 3D objects based on specified gram-
mar rules [MP01,WWSR03,MWH∗06,LWW08]. Shape grammars
such as CGA [MWH∗06] that decompose shapes into other shapes
are especially well-suited for generating complex architectural de-
signs. However, shape grammars are not suitable for generating im-
possible structures that start from visual bridges. This is because
visual bridges appear connected in 2D space, so subdividing the
3D space between them (which can be substantial) would result
in a clutter of structures hidden behind the visual bridges when
projected back into 2D space. In contrast, our procedural language
is more similar to L-Systems [PL90], designed for growth pro-
cesses to explore the space. However, our language differs from
L-Systems in terms of termination and branching.

Creating cycles in 2D space within the context of procedural
modeling is a challenging task. While there are limited works ad-
dressing this issue, one notable approach relies on a top-down de-
composition of shape grammars to construct interconnected struc-

submitted to EUROGRAPHICS 2024.

http://possibleimpossible.s3-website-us-east-1.amazonaws.com/


Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures 3

Visual Bridge Visual Bridge 

Figure 2: When the two components of the structure’s visual
bridge appear to be connected in screen space, the whole structure
gives the impression of being impossible (left figure). Otherwise, it
would not demonstrate impossibility (right figure).

tures in 3D space [KK11]. This method starts by drawing a
"box" between the target connecting points and then subdividing
the space using shape grammars like CGA. However, our proce-
dural language differs significantly from the CGA grammar, and
we need to take into account how the components are projected
in 2D space during the connecting phase, which is not consid-
ered in this method. Another recent approach has employed graph
grammars [Roz99] to create cycles in 2D space [Mer23]. This
method starts with an existing cycle and performs string replace-
ments at each step. However, our procedural language does not per-
form string replacements. Furthermore, we start with visual bridges
which are separate pieces of components in 3D space instead of a
single string. Consequently, we propose a novel approach to gener-
ate cycles within procedural modeling.

Guided Procedural Modeling: There’s a common desire to
generate outcomes that adhere to specific constraints within the
context of procedural modeling [MP96,PL90,RMGH15,TLL∗11].
Many approaches have been designed to give users control over
the process and generate more predictable results [BvmM11,
RLGH15]. In our work, we use Sequential Monte Carlo (SMC)
[DDFG01], a sampling method to control the output of procedu-
ral models by viewing each model as a sample from a probability
distribution [SG92].

3. Approach

The process of creating impossible structures begins with under-
standing the characteristics that define them. Humans have an
innate ability to instantly perceive three-dimensional structures
from two-dimensional drawings [WFY∗10]. However, this ability
can pose challenges when encountering impossible structures. Al-
though viewers can easily perceive the localized three-dimensional
structure of individual components within the drawing, attempting
to view the drawing as a cohesive whole unveils structural incon-
sistency. This will prompt viewers to realize that the figure is not
physically possible.

Our observation is that the key element making this kind of struc-

ture appear impossible is the visual bridges. A visual bridge con-
tains two separated components carefully positioned to give the im-
pression of connection in the screen space (Figure 2). As viewers
are deceived to believe the two components are connected in 3D
space, the existence of substructures that connect the two compo-
nents of the visual bridge in 3D space can subsequently challenge
this perception and confuse the viewer.

Our system employs visual bridges as a fundamental entity. It
then creates a cycle in 2D space that makes the components of vi-
sual bridges appear to be both connected and separated at the same
time. The illusion of impossibility arises from the arrangement and
combination of all the components that constitute the 2D cycle, re-
gardless of how each component appears individually. Based on
this observation, our method (Figure 3) initially generates a proxy
of the impossible structure using cuboids. Subsequently, we sub-
divide and embellish the spaces within these cuboids to enhance
the visual appeal of the final result. This design can both simplify
our computation and allow artists to apply different decorations to
the same proxy to create results satisfying their needs (we show
examples of using different decorations on the same proxies in Fig-
ure 23).

In the following sections, we start by formally defining the con-
cept of visual bridges (Section 4). Then we describe the procedure
for choosing visual bridges as starting points (Section 5.1), per-
forming a random derivation to introduce variation (Section 5.2),
and finding a pathway to connect the visual bridges (Section 5.3).
After that, we introduce methods to decorate the results (Sec-
tion 5.4) and a set of scoring functions used to evaluate these struc-
tures during generation (Section 6). Additionally, we will explain
our use of Sequential Monte Carlo (SMC) inference to sample
high-scoring structures (Section 7). Finally, we will demonstrate
the interactive system we developed on top of this algorithm and
present results with varying features and complexities (Section 8).

3.1. Procedural Language for Impossible Structures

We introduce a procedural language that resembles L-Systems
for generating the impossible structures. Essentially, this language
adds a new structure component at each execution step. Precisely,
this language L is a tuple

L=< M,ω,R >

where M represents the alphabet, ω stands for the axiom, and R
is a set of production rules. The alphabet contains parameterized
modules denoted as M = {A(P),B(P), . . .}. P are parameters such
as translation, rotation, and scaling. In our system, each instance
of a module is represented as a cuboid, and we use continuous
parameters for the transformations of the modules. The axiom ω

is the initial state, which constitutes the visual bridges chosen at
Section 5.1. All the production rules are executed with probability
and conditions that determine the modules’ relationship with either
other modules or the viewport. When a rule is executed, we add
an instance of the module on the right-hand side of the rule to the
structure, without replacing the instance of the module on the left-
hand side.

submitted to EUROGRAPHICS 2024.



4 Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures

Visual Bridge Phase Random Derivation Phase Connecting Phase Decorating Phase

Load Models 

Figure 3: Generating an impossible structure starts from the visual bridges phase (Section 5.1), and goes through the random derivation
phase (Section 5.2), connecting phase (Section 5.3), and decorating phase (Section 5.4).

The rules take the form:

id1 : A(P) : condition, prob → B(P) ∈ M (1)

id2 : B(P) : condition, prob →C(P) ∈ M (2)

However, our procedural language differs from an L-System in the
following ways:

Termination: We omit termination symbols to avoid introduc-
ing the concepts of start and end in the cycle generated. In our
language, termination is determined during execution (see Sec-
tion 5.3). Furthermore, different from L-systems, not only the ter-
minal symbols but also every symbol in our language can be con-
verted to geometry (cuboids, in our system).

Branching: L-Systems often create new branches at each step
and execute rules in parallel. But our language is much more con-
servative when creating new branches. While we do allow the ad-
dition of new branches, these branches must also form a cycle
that creates the illusion of impossibility. Otherwise, unnecessary
branches would only distract viewers from perceiving the impossi-
bility of the structure (we further discuss branching in Section 5.2).

4. Visual Bridges

In this section, we formally define the concept of visual bridges
and discuss their taxonomy. We define a visual bridge as a com-
bination of two distinct components that give the appearance of
being connected in the screen space. This concept of finding seem-
ingly connected components in 2D space to create an illusion of
impossibility has previously been explored in several studies, such
[Ern86, Ern06, LYY∗16, SRC20]. However, our approach is differ-
ent from these methods which focus on high-level concepts (such
as the ’shifting gap’ in [LYY∗16]). We operate on low-level ge-
ometries, the visual bridges, to create the impossible structures. We
present a detailed taxonomy of visual bridges that has not been
seen in previous works. In this section, we will refer to the two
components of the visual bridges as "beams," as we represent all
components as cuboids. We will further explain how to choose vi-
sual bridges and incorporate them into our generation procedural in
Section 5.1.

We use P ∈ R2 to denote the point where the two components
connect on the screen space, and P1, P2 ∈R3 as two distinct points
in 3D space that both project to P. We let P1 be the point closer

Plugin beam

Receiver beam

Receiver beam

Plugin beam P1, P2

P1, P2

Figure 4: We introduce terms used in this section. In both figures,
the blue beam is the foreground beam and the red beam is the back-
ground beam. In the left figure, the blue beam is the plugin beam;
in the right figure, the blue beam is the receiver beam. P1 and P2
are different points in 3D space that both project to P on screen.

to the camera and we call the beam growing from P1 as the fore-
ground beam, colored in blue. We call the beam growing from
P2 as the background beam, colored in red in the following dis-
cussion. We call the beams plugged into the other beam the plugin
beam, and the beam being plugged into as the receiver beam. Both
the foreground (blue) beam and the background (red) beam can be
either the plugin beam or the receiver beam. Figure 4 provides a
visualization of these definitions.

In addition to both of their starting points projecting to the same
point P on the screen, there is an additional condition for two beams
to appear connected: the connecting point of the foreground beam,
labeled as P1, must remain hidden from the viewer (Figure 5). Our
insight is that the viewer should not directly perceive the physical
connection between the foreground and background beams in 3D
space (which does not exist). Instead, the viewer is encouraged to
imagine a connection that isn’t physically present. In the following
subsections, we first discuss the scenarios where two beams extend
in the same or different directions and then discuss the allowed
rotations for visual bridges.

submitted to EUROGRAPHICS 2024.



Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures 5

P1 (not observable) P1 (observable)

Figure 5: Hiding the starting point (P1) of the foreground beam
(blue) from the viewer can make the two beams appear connected.
In the left figure, P1 is not observable and the two beams appear to
be connected. In the right figure, P1 is observable and the beams
appear not to be connected.

Foreground beam as 
plugin beam

Background beam as 
plugin beam

P1 
not observable

P1 
observable

Figure 6: We show the four combinations of two beams extending
in different directions. We categorize the combinations based on
which beam is the plugin beam and whether P1 can be observed.
In cases when P1 cannot be observed, the two beams appear to be
connected in 2D space by nature.

4.1. Beams Extending in Different Directions

Given two beams extending in different directions, we can identify
four distinct combinations of the two beams, as shown in Figure 6.
We differentiate them based on two characteristics: whether P1 is
observable and which beam (red or blue) is the plugin beam. In
instances where P1 is not observable, the two beams appear inher-
ently connected when properly positioned. Conversely, for cases
where P1 is observable, we implement surface modifications as de-
tailed below.

Our modification centers around applying the Mimetic Surface
Color and Texture Adjustment (MSCTA) algorithm [Tsu15]. This
algorithm involves altering the colors of surfaces of varied normal
to create the illusion of uniform coloration. In our implementation,
we carve out the portion of the foreground (blue) beam that contains
point P1 and then use MSCTA to adjust the color of the carved
surface (color1) to match the color of the outer surface (color2)
of the beam. This strategy deceives viewers into perceiving both

Foreground beam as 
plugin beam

Background beam as 
plugin beam

Result

Surface 
Modification

Color1
Color2

Color1
Color2

Figure 7: Surface modification on cases when P1 is observable.
[ADD: We highlight the contour for clear visibility of component
edges. The contour is omitted in all our final results.] The first row
shows the modification, and the second row shows the result. We
show both cases when the blue beam is the plugin beam (left col-
umn) and cases when the red beam is the plugin beam (right col-
umn).

Direction

Direction

Direction

Figure 8: When two beams extend in the same direction, there is
only one type of visual bridge available.

surfaces as identical, thereby concealing the fact that P1 has been
removed (Figure 7).

4.2. Beams Extending in the Same Direction

When both the foreground (blue) beam and the background (red)
beam extend in the same direction, there is only one way to hide
P1 from the viewer, resulting in only one type of visual bridge. In
Figure 8, we provide some examples of such cases.

4.3. Allowable Beam Rotations

We notice that in instances where P1 is not observable, we can ro-
tate the plugin beam as long as this rotation does not render P1
observable. The rotation should occur along directions perpendic-
ular to the receiver beam to ensure that the plugin-receiver status
remains unchanged. The rotation is limited to a range of − π

2 to π

2
in radians to prevent alignment of the plugin beam with the receiver
beam (when rotation = π

2 ) or to transform the existing visual bridge
into a different type (when rotation > π

2 or rotation < π

2 ). Figure 9
provides visual examples of such rotations.

submitted to EUROGRAPHICS 2024.



6 Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures

Plugin beam (Red) 
Rotation 1

Plugin beam (Red) 
Rotation 2Original

Figure 9: Potential rotations of the plugin beam (red). The straight
arrows serve as indicators of the rotation axes, and the curved ar-
rows show the rotational movement.

5. Generating Impossible Structures

The preceding section discusses the taxonomy of visual bridges,
and this section delves into the process of generating complete im-
possible structures from the visual bridges. As illustrated in Fig-
ure 3, we go through the visual bridge phase, the random derivation
phase, and the connecting phase to create a structure that gives the
impression of impossibility. After that, we use the decorating phase
to make our results visually pleasing.

5.1. Visual Bridge Phase

The visual bridge phase is the first step of the generation process
(Figure 3). It provides two procedural components for the entire
structure to grow from. We have defined visual bridges as beams in
the previous section. In this subsection, we make them procedural
components and assign parameters to them.

We start by randomly selecting a point P within a radius r cen-
tered on the viewport. Then, we determine two distinct points in
world space, P1 and P2, both of which project to P on the screen.
In our implementation, we use an orthographic camera positioned
at coordinates (5,5,5) in world space, with an up vector of (0,1,0)
and a look-at point at (0,0,0), which creates an isometric view.
This choice can be arbitrary and depends on the desired perspec-
tive. Our viewport is an 800× 800 square, and we select r = 100
to keep P near the center of the screen. We choose P1 randomly at
a distance between 2 and 3 units from the screen and find P2 based
user’s target complexity of the structure (see Section 8). Generally,
P2 is positioned 2 to 5 units away from P1, and increasing this dis-
tance results in more complex structures.

The next step involves assigning module types to the compo-
nents of the visual bridges. We observed that there must be a valid
production rule between these components so that when the two
components appear connected on the screen, their connection ap-
pears appropriate. In our implementation, our grammar provides

Different Perspective

Figure 10: This method combines two visual bridges by sharing a
common component. We present the method from two perspectives.
We highlight the contour for clear visibility of component edges.
The contour is omitted in all our final results.

various combinations of visual bridge types, and our system ran-
domly selects from these options.

Multiple Visual Bridges We also permit the presence of mul-
tiple visual bridges within a single structure. In most cases, the
system establishes connections between components from differ-
ent visual bridges as further introduced in Section 5.3. A special
scenario occurs when we have two visual bridges with the same
module types and directions. In this case, we can combine them
to share a common background component as shown in Figure 10.
These special visual bridges can result in impossible structures with
depth interposition, exampled by the results in Figure 19.

5.2. Random Derivation Phase

The random derivation phase begins with two disconnected com-
ponents obtained from the visual bridge phase and starts a random
derivation of the grammar from both of them to introduce variety as
illustrated in Figure 3. The system executes the procedural gram-
mar for a random number of steps that would satisfy the user’s
desired complexity (see Section 8) and ultimately outputs two se-
quences of connected procedural components.

We allow the creation of new branches during the random deriva-
tion phases but create them with caution. For each new branch
introduced, it must form a new cycle. Otherwise, unnecessary
branches would only divert viewers’ attention away from perceiv-
ing the impossibility of the structure. When new branches are cre-
ated, we randomly pair the new branches at the end of the ran-
dom derivation phase and establish connections between paired
branches in the connecting phase. It is important to note that this
pairing may not always be one-to-one. As the grammar executes
randomly, it may result in different numbers of branches starting
from the foreground and background components. We provide an
example of an impossible structure with two branches and its gen-
eration process in Figure 22.

5.3. Connecting Phase

The connecting phase is the third step in the process outlined in Fig-
ure 3. This phase starts with two disconnected sequences of com-
ponents and outputs an unadorned impossible structure, which we
call a "proxy". We first identify two ending components cA and cB

submitted to EUROGRAPHICS 2024.



Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures 7

Figure 11: The procedure for connecting two components in 3D space. In this simplified context, we use a basic grammar comprising two
elements: cubes and cuboids, which are governed by two rules - cuboids derive from cubes, and cubes derive from cuboids. The blue cube
represents the starting component, while the red cube represents the ending component. In the example, we establish a connection along the
X, Y, and Z axes sequentially. We show the detail of connecting in the X direction on the right part of the figure. During the execution, we
track both the sum of the lower and upper bound values of all the components along the X-axis in the lower and upper bound sequences. The
process continues until the distance between the starting and ending component along the X-axis (denoted as δdx ) is between the upper and
lower sum. Then we check if there exists a production rule for the last object in the current sequence to extend in the Y-axis, which is the next
direction to consider. In the provided example, we reject the sequence at step N because the last component (the cuboid) lacks a production
rule in the Y-axis. Then we continue to execute the grammar to add a new component and accept the sequence at step N+1 as the newly
added component(the cube) has a production rule in the Y-axis. Subsequently, we adjust the parameters of the accepted sequence to precisely
match δdx . After completing this process for the X-axis, we move on to the other two directions. We obtained our final result when we finished
the search for all three directions.

within the two given sequences and execute our connecting algo-
rithm (Figure 11) to determine a pathway c1, c2, ..., ck that starts
from cA and terminates at cB. Moreover, there must exist a transi-
tion rule from cA to c1, ci to ci+1 ∀ i < k, and ck to cB.

We denote the distance between cA and cB as δ. Our approach
tackles this problem separately in three different axes: X, Y, and
Z. We denote the direction along an axis as d̂, and the distance
from cA to cB along an axis as δd̂ . Our goal is to find a sequence
of components whose combined size in d̂ equals δd̂ . Additionally,
the last component of this sequence must have a production rule
leading to the next direction (or to cB if we are solving for the last
axis). We randomize the order of applying our algorithm along axes
X, Y, and Z, and find solutions for each axis sequentially.

When solving for a direction d̂, our method prioritizes rules ex-

tending in d̂. This allows us to efficiently find a solution for d̂ with-
out interfering with searches in other directions. However, we do
allow the execution of production rules not in d̂ when no suitable
rules are available (discussed further in Appendix B). Our method
involves two major steps. Firstly, we identify a sequence of com-
ponents whose sum of scales in d̂ is close to δd̂ . To do so, we track
the lower and upper bounds of the sum of scales of the components
along the d̂ axis. A potential sequence is identified if δd̂ falls within
this range (proof can be found in Appendix C). Subsequently, we
go through an iterative process to gradually adjust the scales of each
component, approaching the exact value of δd̂ .

The advantage of this approach is that it does not rigidly con-
strain the exact number of components. If a sequence encounters
difficulties in identifying a suitable production rule for the next di-
rection, introducing a new component could potentially resolve the

submitted to EUROGRAPHICS 2024.



8 Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures

problem while still keeping the sequence within the defined scale
range. For a more detailed algorithm, please refer to Appendix B.
We also provide a validation of our algorithm in Appendix D.

When multiple visual bridges are present within a single struc-
ture, we establish connections (method see Section 5.3) between
components from different visual bridges in 3D space until only
two components remain unconnected. These two remaining com-
ponents serve as the starting components for the random derivation
phase.

5.4. Decorating Phase

The previous subsections focus on generating complete impossi-
ble structures, but the results are plain and have simple geometries.
In this subsection, we introduce methods to enhance the aesthetics
of our results by either subdividing the space within our structures
or employing text-guided neural networks. This discussion corre-
sponds to the decorating phase depicted in Figure 3.

Decorations with Procedural Languages: One approach to
decorating the impossible structures is to subdivide the space inside
it for more complicated designs. The impossibility of the structure
is determined by the arrangement of the components, so subdivid-
ing spaces inside individual components does not compromise the
fundamental impossibility.

Our system can execute various procedural grammars within the
components, as long as the outputs are contained in the scope of the
components. In our results, we demonstrate structures decorated
using CGA (Figure 15). We also execute our own procedural gram-
mar within the components, resulting in structures where smaller
impossible structures are nested within larger ones (Figure 17).

Decorations with ControlNet: We also leverage the property
that impossible structures can only be perceived as impossible from
a specific perspective. This enables us to decorate results in 2D
space. In our demonstration, we input 2D images of our results
into text control ControlNet as input [ZA23] (model [Zha23]) for
further decoration. We showcase both decorations applied to the
proxies from the connecting phase and applied to results that have
already been decorated using procedural languages (Figure 21).

6. Scoring Functions

The previous sections describe a method for generating complete
impossible structures. However, not all of these structures are
equally desirable. In this section, we describe a set of scoring func-
tions to identify the most promising structures during the genera-
tion process. The scoring function has two main components: struc-
tural integrity score and visual harmony score. The structural in-
tegrity score evaluates how a newly added component ci might dis-
rupt the previous structure on the screen space and 3D space (Fig-
ure 12). The visual harmony score assesses the overall aesthetics of
the structure (Figure 13).

6.1. Structural Integrity score

Occlusion Score: We use occlusion score to ensure that the new
component ci does not obscure essential details of the existing

a) Occlusion Score b) Overlapping Score c) Protruding Score

Figure 12: We show features (in red rectangles) that lead to low in-
tegrity scores. Figure a) shows a low occlusion score as the visual
bridge is obscured by the foreground structures. Figure b) shows a
low overlapping score as the components on the left bottom overlap
in 3D space. Figure c) shows a low protruding score as the compo-
nent on the upper left corner extends beyond the viewport.

structure. Specifically, if the visual bridges are occluded, the struc-
ture loses its inherent impossibility. However, we also noticed that
the visual bridges can occupy a relatively large portion of the
screen, making it challenging for the newly added components to
avoid occlusion entirely. To address this, we assign greater impor-
tance to pixels near the 2D position P(xp,yp)(the starting point of
the visual bridge, discussed in Section 4). We use Pci to denote
the set of pixels covered by ci (which is the newly added compo-
nent) and Soc to represent the occlusion score. We use a Gaussian
Function to measure Soc as shown below:

Soc(ci) = α · |Pci |− ∑
(x,y)∈Pci

exp(−((x− xp)
2 +(y− yp)

2))

(α is a positive constant that controls the contribution of number
of pixels occupied by ci. In our implementation, we choose α=0.2)
Overlapping Score: We use the overlapping score to ensure that
two components do not overlap each other in the 3D space. We
use Vs to denote the 3D space occupied by the existing structure
and Vci for the space occupied by ci. We use Sov to denote the
overlapping score.

Sov(ci) =

{
1, Vs ⋂Vci =∅
0, otherwise

Protruding Score: We want to ensure that the ci does not extend
beyond the viewport. We use Pci to denote the set of pixels covered
by the ci in screen space and P to denote all the pixels covered by
the viewport. We use S pr to denote the protruding score.

S pr(ci) =

{
1, Pci

⋂
P = P

0, otherwise

6.2. Visual Harmony Score

The visual harmony score evaluates the aesthetic aspects of the
structure (demonstrated in Figure 13). It prevents the structures
from leaning towards "extremes," such as having all the procedural
components of the same type or crowding all the components into
a small space.

submitted to EUROGRAPHICS 2024.



Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures 9

a)Probabilistic 
Consistency Score b)Density Score

Figure 13: The importance of the visual harmony score is intro-
duced in this section. Figure a) shows an "extreme" structure with
a low probabilistic consistency score. All the components in Figure
a) have the same type making the structure uninteresting. Figure b)
shows a structure with a low density score clustering in the lower
part of the viewport (which is the red box).

Probabilistic Consistency Score: Our procedural grammar de-
termines a prior probability for each rule to be executed. How-
ever, during the execution, the actual results may not strictly align
with these probabilities due to factors like the connecting phase
(we favor rules in a certain direction) or the Sequential Monte
Carlo (SMC) sampling process (introduced in Section 7). In our
approach, we prioritize results where the empirical probability
doesn’t deviate significantly from the initial prior probabilities.

We employ a Markov Chain [Chu60] approach to determine
the probabilities of each module type based on the probabili-
ties of the transition rules (for detailed calculations, refer to Ap-
pendix E). We represent the prior probabilities of module types
as π = (πA,πB, ...πK), where ∑k πk = 1.We count the occurrences
of objects for each module type present in the existing structures
and represent the observed probabilities of component types as
(pA, pB, ...pK), where ∑k pk = 1.

We use KL divergence to measure the dissimilarity between the
empirical distribution and the prior distribution at each step, de-
noted as S pc.

S pc(ci) =−∑
k

pk · log(
pk
πk

)

Density Score: We use the density score to prevent the entire struc-
ture from clustering in a small region. We measure such scores in
2D space due to the fact that components far apart in 3D space
might still appear very close in 2D space. The density score not
only penalizes regions that are overly crowded but also encourages
the structure to expand into less populated areas.

To compute the density score, we rasterize ci onto the screen
space and identify its center in the screen space as PO. We then iter-
ate through a circular region centered at PO with a radius of r to lo-
cate all objects within the neighborhood. For each rasterized object
ck within this neighborhood, we denote its center to PO distance as
dk and the number of pixels it occupies within the neighborhood as
|Pk|. We first calculate a metric for "crowdedness" in the neighbor-
hood, D, by considering both the distance of the objects in screen

space and the number of pixels they occupy.

D = ∑
k

α · 1
(dk)2 +β · |Pk|

Now we define the density score Sde as a decaying function that
approaches 0 as D increases. This score can also become relatively
large when ci is expanding into an empty space.

Sde(ci) = exp(−α
′ ·D−β

′)

(α, β, α
′, and β

′are positive constants. The former two can be ad-
justed to balance the contribution of the distance and size factors
to D, while the latter two can be adjusted to determine the rate of
decay and resulting value when the space is empty. In our imple-
mentation, we set α = 0.2, β = 0.8, α

′ = 0.5, and β
′ = 1.5.)

6.3. Final Score Computation

We have defined several scoring functions to evaluate different as-
pects of the impossible structure. Now we show how to combine
them to compute a function F that evaluates the effect of the new
component ci. We perform an incrementalized score computation
by tracking which components of the score need to be updated in
response to a structural change.

The base case of the recurrence, F(c0), occurs prior to the ran-
dom derivation phase and after the visual bridges are chosen. In
this scenario, F(c0) = S pc(c0) since no components are occluding,
overlapping, protruding, or leading to high density. After that, at
each step when a new component ci is added, we update the effect
of ci in terms of occlusion, overlap, protrusion, and density. We
also need to check the value of S pr(ci) separately each time. At
each state, the updated result δF(ci)is:

δF(ci) = S pc(ci)−S pc(ci−1)+Soc(ci)+Sde(ci)

Therefore, we have the following relation:

F(ci) = (F(ci−1)+δF(ci)) · Sov(ci) · S pr(ci)

7. Inference

Our system uses the scoring functions introduced in Section 6 to
search the output space of the procedural model. In particular, we
use the Sequential Monte Carlo (SMC) method to focus the search
on promising structures. SMC is a method to approximate Bayesian
inference: given a prior p(x) and a likelihood p(y|x), it produces
samples from the posterior distribution p(x|y). It does this by pro-
ducing a sequence of distributions p0 . . . pn, such that pn ≈ p(x|y).
Each distribution pi is represented by a set of samples, called parti-
cles. Given p0 drawn from system initialization, the algorithm sam-
ples an initial set of particles and weights them according to the
likelihood. It then samples a new set of particles according to the
weights and evolves the particles to p1 according to the grammar
execution [SG92].

In our implementation, the initial state p0 is given by the sys-
tem’s random choice in the visual bridge phase. After that, in the
random derivation phase, the prior is the product of the probabili-
ties of all random choices made during the procedural model. The
likelihood is the score function F . Initial particles are sampled by

submitted to EUROGRAPHICS 2024.



10 Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures

generating random types of visual bridges. The proposal function
executes one more step when the procedural model adds a new
component to the structure (please refer to Appendix F for more
details).

In the connecting phase, we make modifications to the process.
We recognize that the connecting phase is inherently more deter-
ministic than the random derivation phase, as the system tends to
favor selecting rules in the target direction instead of making a ran-
dom choice. During this phase, we continue to evaluate F(ci) for
the newly added component at each step. However, instead of re-
sampling particles, we only remove the particles with F(ci) smaller
than a threshold θ.

During program execution, the likelihood of finding desirable re-
sults increases with a larger number of particles. However, a larger
number of particles also leads to higher time consumption. We have
noticed that this is particularly relevant in cases where the compo-
nents of visual bridges are distant from each other or when there
are a significant number of steps in the random derivation phase. In
such scenarios, using more particles becomes necessary to achieve
satisfactory outcomes.

Through experimentation, we found that using 1000 SMC par-
ticles is adequate for generating satisfactory results for structures
containing fewer than 40 random walk steps and 6 units’ distance
between visual bridge components (which takes about 50-70 con-
necting steps). This entire process typically takes less than 5 min-
utes on a 2019 MacBook Pro equipped with an Intel i7 CPU. Our
implementation is single-threaded, and further reductions in run-
time may be achieved by parallelizing the score computation for
different particles. More timing results on structures with varying
complexity can be found in Appendix G.

8. Results and User Interactions

Our system can generate a wide range of results, ranging from
fundamental and well-known impossible structures (Figure 14) to
more intricate and complex ones. We design the system to assist
users with limited knowledge of impossible structures in exploring
a wide variety of results, and we demonstrate six groups of results
showing different features:

• Desolated Ruins: In this scenario, our system generates struc-
tures depicting abandoned and desolated ruins. This scenario
showcases the basic capabilities of our system (Figure 15 and
Figure 16).

• Modern Factories: In this scenario, our system generates struc-
tures depicting modern factories utilizing energy produced from
a large sphere’s energy synthesis. While the factory itself consti-
tutes an impossible structure, the "energy synthesis" inside the
large sphere also forms another impossible structure. This sce-
nario showcases our system’s capability to incorporate curves
and spheres, as well as execute our language within structural
components (Figure 17).

• Roses and Branches: In this scenario, our system generates
structures depicting roses and plants growing on withered tree
branches. This scenario showcases our system’s capacity to gen-
erate non-axis-aligned impossible structures (Figure 18).

• Temples: In this scenario, our system generates structures de-
picting temples. These temple structures exhibit depth interpo-
sition, and their stairs incorporate the characteristic of normal
disappearance. This scenario showcases our system’s capacity to
combine various types of impossibility within a single structure
(Figure 19).

• Dimensional Collapse: In this scenario, our system generates
structures that contain substructures in both 2D and 3D space.
We project a portion of the resulting structure, excluding the vi-
sual bridges, onto 2D planes. Despite this projection, the result-
ing structure maintains its sense of impossibility (Figure 20).

• Guided Impossible Structure: In this scenario, our system gen-
erates a structure featuring the character "EG". While our system
primarily focuses on an exploratory design, we demonstrate its
ability to generate goal-directed impossible structures by incor-
porating a scoring function to guide the random derivation phase.
Additional details of this process can be found in Figure 24.

User Interface We have developed an interface to facilitate in-
teraction with our system. Users can choose from four predefined
scenarios and select a desired complexity level ranging from 1 to
12. The complexity level influences the distances between the fore-
ground and background components of the visual bridges and the
number of steps in the random derivation phase (see Appendix H).
We also show the corresponding results for different complexity in-
puts (Figure 15). For users who want more control over the system,
we provide advanced options (detailed in Appendix I). The details
of our UI system are illustrated in Figure 25. (Refer to the supple-
mental for a video of an interactive session using this interface, and
this link for online demo).

Collaboration with a student artist We collaborated with a stu-
dent artist from a highly-ranked design school in the US whom we
found through social networks. The artist had no prior experience
with procedural modeling. We provided the artist with a tutorial on
using our system. Additionally, we designed a CGA grammar based
on the artist’s requests. Afterward, we asked the artist to design a
grammar for generating impossible structures and create 3D mod-
els as needed. The artist successfully produced results as demon-
strated in Figure 15 and Figure 16, and we provide the artist’s feed-
back in Appendix J.

9. Conclusion

We present a novel approach to designing and exploring seemingly
impossible structures. Our generation process begins by selecting
appropriate visual bridges, followed by random derivation of the
grammar and connecting the endpoints of the visual bridges. After
the generation process, our system can further enhance the results
through 3D space subdivision or application of diffusion models
on the 2D results. Furthermore, we propose scoring functions to
evaluate structures and employ the Sequential Monte Carlo (SMC)
method to explore visually appealing results. We also offer a user
interface for interacting with the model and showcasing various re-
sults generated by our system.

Our system is designed to assist non-expert users in exploring
a wide range of impossible structures. For designers who want to
transform a single structure into an impossible one, previous meth-
ods that provide tools for structure editing may be more suitable.

submitted to EUROGRAPHICS 2024.

http://possibleimpossible.s3-website-us-east-1.amazonaws.com/


Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures 11

Furthermore, our system primarily focuses on creating impossible
structures using the disconnected components trick; there are other
types of impossible structures such as the ‘disappearing space’ that
we cannot produce (discussed in Appendix A)

Additionally, while generating a variety of results using our
built-in grammar is straightforward, authoring new grammar to
model entirely new scenes remains a challenge. A promising di-
rection for future research could involve enabling non-expert users
to generate a wide array of real-life objects as impossible struc-
tures without requiring knowledge of the grammar. One potential
approach could involve inverse procedural modeling and grammar
inference from input objects, as explored in previous works such as
[MM11, RJT18, GJB∗20].

Lastly, our work has implications beyond the scope of impos-
sible structures. Our method for generating impossible structures
sheds light on creating other view-dependent structures. This in-
volves initially designing components that fulfill certain criteria
based on the viewer’s viewpoint, followed by assembling the en-
tire structure. Additionally, our algorithm for connecting proce-
dural components, using grammars resembling L-Systems, may
also be applied in other procedural modeling works. For instance,
we demonstrate its capability to generate cycles in 3D space, a
challenging problem in procedural modeling (as detailed in Ap-
pendix K).

References
[Ale08] ALEXEEV V.: Impossible world, 2008. URL: https://
im-possible.info/english/. 1

[BvmM11] BENEŠ B., ŠAVA O., MĚCH R., MILLER G.: Guided proce-
dural modeling. Computer Graphics Forum 30, 2 (Apr 2011), 325–334.
doi:10.1111/j.1467-8659.2011.01886.x. 3

[Chu60] CHUNG K.: Markov Chains with Stationary Transi-
tion Probabilities. Springer Book, 1960. doi:10.1007/
978-3-642-49686-8. 9

[Cow77] COWAN T.: Organizing the properties of impossible figures.
Perception 6 (1977), 41–56. 2

[DDFG01] DOUCET A., DE FREITAS N., GORDON N.: An introduction
to sequential monte carlo methods. Springer Book, 2001. doi:10.
1007/978-1-4757-3437-9_1. 3

[Elb11] ELBER G.: Modeling (seemingly) impossible models. Computer
and Graphics 35, 3 (Jun 2011), 632–638. doi:/10.1016/j.cag.
2011.03.015. 2

[Ern86] ERNST B.: Adventures with Impossible Figures. Parkwest Pubns;
1st ed. edition, 1986. 2, 4

[Ern06] ERNST B.: Impossible Worlds: 2 in 1 Adventures with Impossible
Objects. TASCHEN, 2006. 2, 4

[Fou] FOUNDATION E.: M.c escher, the official website. URL: https:
//mcescher.com/. 1

[Gam] GAME M.: Monument valley panoramic collection. URL:
https://www.monumentvalleygame.com/mvpc/. 1, 2

[GJB∗20] GUO J., JIANG H., BENES B., DEUSSEN O., ZHANG X.,
LISCHINSKI D., HUANG H.: Inverse procedural modeling of branching
structures by inferring l-systems. ACM TOG 39, 5 (Jun 2020), Article
155 : 1–13. doi:/10.1145/3394105. 11

[KK01] KHOH C., KOVESI P.: Animating impossible objects. Leonardo
34, 3 (Jun 2001), 197–198. 2

[KK11] KRECKLAU L., KOBBELT L.: Procedural modeling of intercon-
nected structures. Computer Graphics Forum 30, 2 (Apr 2011), 335–344.
doi:/10.1111/j.1467-8659.2011.01864.x. 3

[Kul83] KULPA Z.: Are impossible figure possible. Signal Processing 5
(1983), 201–220. 2, 17

[LWW08] LIPP M., WONKA P., WIMMER M.: Interactive visual editing
of grammars for procedural architecture. ACM SIGGRAPH Proceed-
ings (Aug 2008), Article 102 : 1–10. doi:/10.1145/1399504.
1360701. 2

[LYY∗16] LAI C., YEUNG S., YAN X., FU C., TANG C.: 3d navigation
on impossible figures via dynamically reconfigurable maze. IEEE Trans-
actions on Visualization and Computer Graphics 22, 10 (Dec 2016).
doi:/10.1109/TVCG.2015.2507584. 2, 4

[Mer23] MERRELL P.: Example-based procedural modeling using graph
grammars. ACM TOG 42, 4 (Jul 2023), Article 60 : 1–16. doi:/10.
1145/3592119. 3

[MM11] MERRELL P., MANOCHA D.: Model synthesis: A general pro-
cedural modeling algorithm. IEEE Transactions on Visualization and
Computer Graphics 17, 6 (Jun 2011), 715–728. doi:/10.1109/
TVCG.2010.112. 11

[Mor10] MORTENSEN C.: Inconsistent geometry. Studies in Logic. Col-
lege Publications, London, 2010. 18

[MP96] MĚCH R., PRUSINKIEWICZ P.: Visual models of plants interact-
ing with their environment. ACM SIGGRAPH Proceedings (Aug 1996),
397–410. doi:/10.1145/237170.237279. 3

[MP01] MÜLLER P., PARISH Y.: Procedural modeling of cities. ACM
SIGGRAPH Proceedings (Aug 2001), 301–308. doi:10.1145/
383259.383292. 2

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GOOL L.: Procedural modeling of buildings. ACM TOG 25, 3
(Jul 2006), 614–623. doi:10.1145/1141911.1141931. 2

submitted to EUROGRAPHICS 2024.

https://im-possible.info/english/
https://im-possible.info/english/
https://doi.org/10.1111/j.1467-8659.2011.01886.x
https://doi.org/10.1007/978-3-642-49686-8
https://doi.org/10.1007/978-3-642-49686-8
https://doi.org/10.1007/978-1-4757-3437-9_1
https://doi.org/10.1007/978-1-4757-3437-9_1
https://doi.org//10.1016/j.cag.2011.03.015
https://doi.org//10.1016/j.cag.2011.03.015
https://mcescher.com/
https://mcescher.com/
https://www.monumentvalleygame.com/mvpc/
https://doi.org//10.1145/3394105
https://doi.org//10.1111/j.1467-8659.2011.01864.x
https://doi.org//10.1145/1399504.1360701
https://doi.org//10.1145/1399504.1360701
https://doi.org//10.1109/TVCG.2015.2507584
https://doi.org//10.1145/3592119
https://doi.org//10.1145/3592119
https://doi.org//10.1109/TVCG.2010.112
https://doi.org//10.1109/TVCG.2010.112
https://doi.org//10.1145/237170.237279
https://doi.org/10.1145/383259.383292
https://doi.org/10.1145/383259.383292
https://doi.org/10.1145/1141911.1141931


12 Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures

Penrose Triangle Impossible Square Impossible Cube

Figure 14: Our system is capable of producing the most famous impossible structures.

Complexity: 3.2 Complexity: 5.5 Complexity: 7.6 Complexity: 8.5 Complexity: 10.1 Complexity: 11.7

Figure 15: We collaborated with a student artist to generate impossible structures featuring abandoned and desolated ruins. The artist
designed a grammar for generating impossible structures using our system and crafted the 3D models accordingly. We also developed a
CGA grammar to decorate the structures according to the artist’s specifications.

Different 
Perspectives

Different 
Perspectives

Different 
Perspectives

One Visual Bridge

Three Visual Bridges Four Visual Bridges

Different 
Perspectives

Two Visual Bridges

Figure 16: Results obtained using different numbers of visual bridges and present views of the structures from different perspectives. In
scenarios where multiple visual bridges are involved, our system starts with connecting sub-components of these visual bridges as explained
in Section 5.3. This can lead to the structure being divided into distinct sections, contingent on which the components are connected. For
example, in the "two visual bridges" case: our system chooses to connect the two foreground components during the visual bridge phase, and
subsequently connects the two background components in the connecting phase. This generates two separate structures that, when observed
from specific vantage points, appear to appear impossible.

submitted to EUROGRAPHICS 2024.



Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures 13

Figure 17: Results featuring modern factories utilizing energy produced from a large sphere’s energy synthesis. Both the factory itself and
the "energy synthesis" inside the large sphere form impossible structures.

Figure 18: Results featuring roses and plants growing on withered tree branches. This scenario showcases our system’s capacity to generate
non-axis-aligned impossible structures.

Figure 19: Results featuring temple-like structures. The structure’s pillars create an illusion of depth interposition, as certain vertical pillars
in the foreground appear to be connected with the horizontal beams in the background. Additionally, when viewed from the right, the temple’s
staircase seems to consist of three steps, yet when observed from the front, it seems to consist of two steps (the disappearing stairs are modeled
based on the method introduced in [SRC20]). These results were generated without leveraging global illumination. The color adjustment
algorithm (as explained in Section 4) is only applied to the diffuse reflectance model. Future works may explore the feasibility of implementing
color adjustments within global illumination through differentiable rendering.

Figure 20: Results that combine components in both 2D and 3D space. In the decorating phase, we project parts of our structure (does not
include the visual bridges) onto 2D planes. Despite this projection, the resulting structure maintains its sense of impossibility.

submitted to EUROGRAPHICS 2024.



14 Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures

Proxy

Space subdivided,
no model loaded

Decorated,
model loaded

Figure 21: Results decorated with ControlNet. We show that we can apply decorations to the 2D figure generated from the proxies, the
results obtained after subdivision in the decorating phase (Section 5.4) but without loading any model, and the full results. We have chosen
four different prompts. From left to right, we are using the following prompts: "porcelain or glass that looks very expensive", "organic,
nature-inspired elements of the landscaping", "a high-tech, energy-efficient factory", and "Japanese Ukiyo-e style with a sunset". For each
of the prompts, we also include positive prompts such as "high contrast with the background" and "high quality".

Figure 22: The procedure for generating impossible structures with branches from two different perspectives. In our process, a new branch is
introduced during the random derivation phase (third column). Subsequently, we pair the foreground and background branches and establish
a connection for each of them in the connecting phase (fourth column).

submitted to EUROGRAPHICS 2024.



Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures 15

Proxy Decorated Result 1 Decorated Result 2 Proxy Decorated Result 1 Decorated Result 2

Figure 23: Results that share the same proxy. In the two groups of figures, we apply different CGA grammars to decorate the same proxy
generated. This further allows artists to produce new scenes without knowing the grammar for generating impossible structures.

Visual Bridge Phase “Random” Derivation Phase Connecting Phase Decorating Phase

Figure 24: An example of a goal-directed result showing "EG". To create this result, we rasterize our structure to 2D space during the random
walk phase. We employ an extra scoring function that directs the structure to cover pixels forming the intended pattern. This approach is out
of the scope of our initial exploratory design.

Figure 25: Our interactive system takes a single numerical input indicating the desired complexity level of the target result (introduced in
Appendix H). It assists in exploring a wide range of impossible structures. Refer to the supplemental for a video of an interactive session
using this interface, and this online demo.

submitted to EUROGRAPHICS 2024.

http://possibleimpossible.s3-website-us-east-1.amazonaws.com/


16 Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures

[Nol10] NOLAN C.: Inception, 2010. URL: https://en.
wikipedia.org/wiki/Inception. 1

[OF08] OWADA S., FUJIKI J.: Dynafusion: A modeling system for
interactive impossible objects. International Symposium on Non-
photorealistic Animation and Rendering (Jun 2008), 65–68. doi:
/10.1145/1377980.1377994. 1, 2

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The algorithmic beauty
of plants. Springer-Verlag, Berlin, Heidelberg, 1990. 2, 3

[PP58] PENROSE L., PENROSE R.: Impossible objects: A special type of
illusion. British Journal of Psychology 59, 1 (Feb 1958), 31–33. doi:
/10.1111/j.2044-8295.1958.tb00634.x. 1

[Rad99] RADEMACHER P.: View-dependent geometry. ACM TOG (Jul
1999). doi:/10.1145/311535.311612. 2

[RJT18] RITCHIE D., JOBALIA S., THOMAS A.: Example-based au-
thoring of procedural modeling programs with structural and continuous
variability. Computer Graphics Forum 37, 2 (2018). doi:/10.1111/
cgf.13371. 11

[RLGH15] RITCHIE D., LIN S., GOODMAN N. D., HANRAHAN P.:
Generating design suggestions under tight constraints with gradient-
based probabilistic programming. Computer Graphics Forum 34, 2 (Jun
2015), 515–526. doi:10.1111/cgf.12580. 3

[RMGH15] RITCHIE D., MILDENHAL B., GOODMAN N. D., HANRA-
HAN P.: Controlling procedural modeling programs with stochastically-
ordered sequential monte carlo. ACM TOG 34, 4 (Jul 2015), 1–11.
doi:10.1145/2766895. 3

[Roz99] ROZENBERG G.: Handbook of Graph Grammars and Comput-
ing by Graph Transformation. Oct 1999. doi:10.1142/4180. 3

[SDG03] SAVRANSKY G., DIMERMAN D., GOTSMAN C.: Modeling
and rendering escher-like impossible scenes. Computer Graphics Forum
18, 2 (Nov 2003), 173–179. doi:/10.1111/1467-8659.00367.
1, 2

[SG92] SMITH A., GELFAND A.: Bayesian statistics without tears: A
sampling-resampling perspective. The American Statistician 46, 2 (May
1992), 84–88. doi:/10.2307/2684170. 3, 9

[SRC20] SÁNCHEZ-REYES J., CHACÓN J.: How to make impossible
objects possible: Anamorphic deformation of textured nurbs. Computer
Aided Geometric Design (Feb 2020). doi:/10.1016/j.cagd.
2020.101826. 1, 2, 4, 13, 17, 18

[Sug07] SUGIHARA K.: Computer-aided creation of impossible objects
and impossible motions. KyotoCGGT: International Conference on
Computational Geometry and Graph Theory (Jun 2007), 201–212. 2

[Sug20] SUGIHARA K.: Family tree of impossible objects created by
optical illusions. Bridges Conference Proceedings (2020). 17

[Ter80] TEROUANNE E.: ’impossible’ figures and interpretations of poly-
hedral figures. Journal of Mathematical Psychology 24 (1980), 370–405.
2

[TLL∗11] TALTON J. O., LOU Y., LESSER S., DUKE J., MĚCH R.,
KOLTUN V.: Metropolis procedural modeling. ACM TOG 30, 2 (Apr
2011), Article 11 : 1–15. doi:/10.1145/1944846.1944851. 3

[Tsu15] TSURUNO S.: Natural expression of physical models of impos-
sible figures and motions. International Journal of Asia Digital Art
and Design (Jan 2015). doi:/10.1111/j.2044-8295.1958.
tb00634.x. 2, 5

[Uri01] URIBE D.: A set of impossible tiles. THE THIRD INTERNA-
TIONAL CONFERENCE MATHEMATICS DESIGN (2001). URL:
https://im-possible.info/english/articles/tiles/
tiles.html. 2

[WFY∗10] WU T., FU C., YEUNG S., JIA J., TANG C.: Modeling and
rendering of impossible figures. ACM TOG 29, 2 (Apr 2010), Article 13
: 1–15. doi:/10.1145/1731047.1731051. 1, 2, 3, 17

[WWSR03] WOKNA P., WIMMER M., SILLION F., RIBARSKY W.: In-
stant architecture. ACM TOG 22, 3 (2003), 669–677. 2

[ZA23] ZHANG L., AGRAWALA M.: Adding conditional control to
text-to-image diffusion models. "arXiv preprint" (2023). doi:/10.
48550/arXiv.2302.05543. 8

[Zha23] ZHANG L.: Controlnet model - canny, 2023. URL: https:
//huggingface.co/lllyasviel/ControlNet-v1-1/
blob/main/control_v11p_sd15_canny.pth. 8

submitted to EUROGRAPHICS 2024.

https://en.wikipedia.org/wiki/Inception
https://en.wikipedia.org/wiki/Inception
https://doi.org//10.1145/1377980.1377994
https://doi.org//10.1145/1377980.1377994
https://doi.org//10.1111/j.2044-8295.1958.tb00634.x
https://doi.org//10.1111/j.2044-8295.1958.tb00634.x
https://doi.org//10.1145/311535.311612
https://doi.org//10.1111/cgf.13371
https://doi.org//10.1111/cgf.13371
https://doi.org/10.1111/cgf.12580
https://doi.org/10.1145/2766895
https://doi.org/10.1142/4180
https://doi.org//10.1111/1467-8659.00367
https://doi.org//10.2307/2684170
https://doi.org//10.1016/j.cagd.2020.101826
https://doi.org//10.1016/j.cagd.2020.101826
https://doi.org//10.1145/1944846.1944851
https://doi.org//10.1111/j.2044-8295.1958.tb00634.x
https://doi.org//10.1111/j.2044-8295.1958.tb00634.x
https://im-possible.info/english/articles/tiles/tiles.html
https://im-possible.info/english/articles/tiles/tiles.html
https://doi.org//10.1145/1731047.1731051
https://doi.org//10.48550/arXiv.2302.05543
https://doi.org//10.48550/arXiv.2302.05543
https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth
https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth
https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth


Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures 17

Appendix A: Classification of Impossible Structures

Numerous prior works have tackled the classification of impossi-
ble structures [Kul83, WFY∗10, Sug20]. In this section, we adopt
the categorization method introduced by Reyes et al [SRC20]. and
classify impossible structures into four types (Figure 26):

1. Depth interposition: The apparent depth ordering leads to struc-
tural inconsistency. Typical examples are the Necker cube, or a
four-bar arrangement.

2. Depth contradiction: The propagation of local depth informa-
tion leads to a structural depth contradiction. Examples are the
endless Penrose stairs, or the impossible four-bar.

3. Disappearing normals: Apparently, we cannot assign a consis-
tent normal across a face. In the Ernst stairs, the facet F seems
horizontal along three edges, but vertical along e. The rhombic
Renault logo combines a normal orientation that seems incon-
sistent and depth contradiction.

4. Disappearing space: The silhouette is not closed, as in the im-
possible fork, also known as devil’s fork, and its cognates. If we
try to follow the silhouette from the gap between two pins, we
go smoothly from background to foreground.

Our approach is capable of generating all variations within cate-
gories 1, 2, and 3, along with their combinations. However, when it
comes to type 4 structures involving disappearing space, our under-
standing is that these impossibilities require a distortion of the 3D
space. As a result, they are viable exclusively within the confines
of 2D space, remaining unattainable within the realm of 3D mod-
eling. This viewpoint is consistent with the observations of Reyes
et al. [SRC20] (Section 1.2).

Appendix B: Detailed Connecting Algorithm

In this section, we provide a detailed version of our connect-
ing algorithm discussed in Section 5.3. We define the problem:
given two components cA and cB and their position PA = (x,y,z),
PB = (x′,y′,z′) (PA ̸= PB), the objective is to determine a sequence
of components, represented as c1, c2, ..., ck, that initiates from the
PA and culminates at PB. Moreover, there must exist a transition
rule from cA to c1, ci to ci+1 ∀ i < k, and ck to cB.

We denote the distance between cA and cB as δ. Our approach
tackles this problem separately in three different axes: X, Y, AND
Z. For each axis, we denote the direction from cA to cB along this
axis as d̂, and the distance from cA to cB as δd̂ . Our goal is to find
a sequence of components whose combined size in d̂ equals δd̂ .
Additionally, the last component of this sequence must have a pro-
duction rule leading to the next direction (or to cB if we are solving
for the last axis). We randomize the order of axes X, Y, AND Z,
and our method finds solutions for each axis sequentially.

For the search in each direction d̂, we break down our algorithm
into two segments: discovering the sequence of components within
the specified range (Algorithm 1) and adjusting the components’
parameters (Algorithm 2).

This algorithm 1 finds a path connecting component cA and com-
ponent cB along the x, y, and z directions individually. It starts by
randomizing the sequence of the directions. For each direction d̂,
we use δd̂ ∈ R to denote the target distance for the connection.

Algorithm 1 Finding a Sequence

Calculate δ = PA - PB, δ ∈ R3

Random Direction Orders
for d̂ do

SeqUpBound, SeqLowBound = 0
while SeqLowBound < δd̂ do

Find next component ck
Update(SeqUpBound, SeqLowBound, δ)
if SeqLowBound > δd̂ then

return False
if ck is valid then

break
Adjust Parameters

The algorithm prioritizes executing rules in d̂ and accordingly ad-
justs SeqUpBound and SeqLowBound if such rules exist. However,
when rules in d̂ are not feasible, the algorithm adapts by selecting
rules in the subsequent directions while concurrently updating the
value of δ to account for the change in total target distance. The
search process for a direction is concluded either if SeqLowBound
surpasses δd̂ (indicating no available sequence is found) or when
three specific conditions below are met (indicating an available se-
quence is found, proof see Appendix C).

• The cumulative lower bound of the scales of the components in
d̂ (SeqLowBound) is smaller than δd̂ .

• The cumulative upper bound of the scales of the components in
d̂ (SeqUpBound) is larger than δd̂ .

• A transition rule to proceed to the next direction (or transition
rule to cB if all directions have been processed).

Algorithm 2 Adjusting Parameters

Input: d̂, δd̂ , SeqLowBound, a sequence S of components
for component ci ∈ Sequence S do

Assign scale of ci as its lower bound defined by the grammar

while SeqLowBound < δd̂ do
Find random component ci from the sequence
Denote curScale = current scale of ci
Assign a random scale newScale > curScale for ci.
Denote newSeqLowBound = SeqLowBound + (newScale -

curScale)
if newSeqLowBound > δd̂ then

newScale = δd̂ - SeqLowBound
assign newScale to ci
break

update SeqLowBound = newSeqLowBound

This algorithm 2 adjusts the parameters for each component to
make their sum in ĥ exactly equal to δd̂ . We set the initial scales
of the components in the d̂ to their lower bound defined by the
grammar. And then we gradually increase the components’ scales
to approximate δd̂ . For directions other than d̂, the components’
scales are randomly assigned.

submitted to EUROGRAPHICS 2024.



18 Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures

Figure 26: Earlier research [SRC20,Mor10] has categorized impossible structures into four distinct types: a) Depth interposition, b) Depth
contradiction, c) Disappearing normals, and d) Disappearing space. Our system is capable of generating structures falling under categories
a), b), and c). Furthermore, we can produce intricate structures by employing combinations of different types. Image from [SRC20]

Appendix C: Proof of Connecting Conditions

In this section, we show why the three conditions introduced in Sec-
tion 5.3 are sufficient to guarantee the existence of a valid sequence
in d̂. To summarize, the conditions are:

• The lower bound of the components’ sum is less than the target
distance.

• The upper bound of the components’ sum is larger than the target
distance.

• A transition rule exists to proceed to the next direction.

We frame the problem as outlined below:

Claim:

Let sets S1..Si be closed, continuous sets in R, denote as Si = [li,

hi]. If
n
∑
i

li ≤ δ ≤
n
∑
i

hi. Then we can always find a sequence a1 ∈ S1,

a2 ∈ S2... ai ∈ Si such that
n
∑
i

ai = δ.

Proof :

Let sets S1..Si be continuous closed sets, and Si = [li, hi]. We can

choose a1 = l1, a2 = l2... ai = li such that
n
∑
i

ai ≤ δ. Let δ
′ = δ -

n
∑
i

ai,

and we know δ
′ ≥ 0.

Since
n
∑
i

hi ≥ δ =
n
∑
i

ai + δ
′ ≥

n
∑
i

li. We know δ
′ ≤

n
∑
i

hi − li. Since

each [lihi] is a continuous space, we can have δ
′ = ε1 + ε2 + ... + εi

such that εi ∈ [0, hi − li].

Appendix D: Validation on Connecting Algorithm

We examined our connecting algorithm (Section 5.3) on connect-
ing two arbitrary procedural components. In our test, we randomly
choose two components of different module types and place them
in random 3D positions that require 10+ connecting steps to con-
nect between them. Then we execute our connecting algorithm to
find a path to connect the two components. Our experiments show
a success rate of >40 % in executing all our grammars.

In our implementation, our system operates using 300+ sampling

particles (Appendix G), with each independently executing the con-
necting algorithm. This setup ensures that we can always make a
successful connection.

In contrast, we conducted experiments using random execution
of procedural grammar for pathfinding under the same setup. Even
with 1000 particles, we never observe any successful connection.

Appendix E: Probabilistic Analysis using Markov Chain on
Transition Rules

In this section, we will demonstrate how we take a set of modules,
denoted as M = A(P), B(P), ..., and a production rule R as input,
and then compute the probabilities of each module using a Markov
chain. We formulate the problem as below.

Input

• States: Given module M = A(P), B(P), ..., we define set of dis-
tinct states A, B, C, .... Each state represents a type of module.

• Transition rules: For each state X, a set of probabilities denoted
as P(Y|X), where Y is another state and P(Y|X) represents the
probability of transitioning from state X to state Y. These proba-
bilities sum up to 1 for each X.

Iterative Approach

• Base case: We initialize the probabilities with P(AO)=0,
P(BO)=0, P(CO)=0 ... We set P(MO)=P(NO)=0.5, in which m,n
are module types for the visual bridges.

• Iterative Process: At step n, we go through each of the states
and calculate the probability of each state Y at step n as
P(Yn+1) = ∑

N
i=1 P(Y |Xi) ·P(Yin). We repeat the iterative process

for multiple time steps until the probabilities stabilize (in our im-
plementation, we choose 10 as the iterative steps).

• Validation: Lastly, we validate that P(An), P(Bn), P(Cn).... ≥ 0,
and ∑i P(in) = 0

Output

We output P(An), P(Bn), P(Cn)... as the final probabilities for
each module type.

submitted to EUROGRAPHICS 2024.



Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures 19

Appendix F: SMC Implementation

We employ the Sequential Monte Carlo (SMC) method to focus the
search on promising structures. In our approach, the prior p(x) is
represented by the random selections made by the procedural gram-
mar, while the likelihood p(y|x) corresponds to the scoring function
F as detailed in (Section 6). Our system simultaneously tracks and
executes k particles in parallel, as outlined in Appendix G. At each
step, our system samples a new set of particles based on the likeli-
hood, progressing to the subsequent step.

For our purposes, we use F(ci) to denote the score of a structure
at step i. Considering all k particles, we use F(c j

i ) to represent the
score of a particle j at step i. The aggregate score of all k particles
at step i is calculated as: Sum(i) = ΣF(c j

i ) Therefore, for particle
j, the probability of its selection in the next step i+ 1 is given by:
F(ck

i )
Sum(i)

Appendix G: Timing

In this section, we will provide statistics on the time consumption of
executing our program. Our tests were conducted on a 2019 Mac-
Book Pro equipped with an Intel i7 GPU. Each test was run 5 times
(does not include rendering), and we calculated the average results
(numbers rounded to 1 decimal place). Our conclusion is that our
system is capable of generating complex results within 5 minutes.

Timing
Complexity
C

Number
of Steps
s

Visual
Bridge
Distance
d

Number
of Parti-
cles

Time
(sec-
onds)

1.0 1 3 400 4.5
3.5 5 3.5 400 6.2
4.2 5 4 400 9.4
4.7 10 3.5 400 10.9
5.3 10 4 600 13.0
7.1 20 4.5 600 23.4
7.8 20 5 600 26.0
9.0 30 5 600 55.8
9.5 30 5.5 600 60.2
10.1 40 5 1000 143.4
10.9 40 6 1000 162.2
11.8 50 5.5 1500 232.1

Appendix H: Complexity Calculation

In this section, we outline how our system takes a single input num-
ber (denoted as C, ranging from 1 to 12, C can be a float) to com-
pute parameters within our system. Specifically, we compute the
distance d(which is a float) between P1 and P2 in 3D space (used in
Section 5.1), the number of steps s (which must be an integer) for
the random derivation phase (used in Section 5.2), and number of
particles (used in Section 7) from the complexity input C.

In our implementation, we place an orthographic camera posi-
tioned at coordinates (5,5,5) in world space, with an up vector of
(0,1,0) and a look-at point at (0,0,0). Our viewport is an 800×800
square, and we select r = 100 to keep P near the center of the

Figure 27: A detailed view of the advanced options in the user
interface.

screen. We choose P1 (the position for the foreground component)
randomly at a distance between 2 and 3 units from the screen.

In such a setting, we first compute the number of particles used.
For complexity smaller than 5, we use 400 particles; for complexity
between 5 and 10, we use 600 particles; and for complexity more
than 10, we use 1000 particles. Then we compute s (the number of
steps) and d (the distance between P1 and P2 in units) as below:

C2 +10 = 2× (s+(d −1)2)

The design of this formula allows for various combinations of s
and d for a given C. To ensure our flexibility in our parameter se-
lection, we introduce a constant term of 10 on the right-hand side
of the equation. When C is relatively small (e.g., C = 1), the fore-
ground and background components can still have some distance
between them, for example, 3 units (making s = 1).

When computing values for both s and d, our approach involves
first generating a random number for d, and then solving for s based
on this randomly chosen d (we round up if s is not an int). This
process enables us to achieve different combinations of s and d
while adhering to the specified input complexity C.

Appendix I: User Interace

Our system offers advanced user options for controlling the gen-
eration process (Figure 27). Users can determine the number of
visual bridges and set their positions on the screen and in 3D co-
ordinates. Users can also choose the number of steps in the visual
bridge phase (Section 5.2). This feature enables users to tailor the
generation process to their individual preferences.

Appendix J: Artist Feedback

Our collaborating artist has shared that understanding the concept
of visual bridges is straightforward. The specific technique used
to construct these bridges is not crucial as long as the method is

submitted to EUROGRAPHICS 2024.



20 Yuanbo Li, Tianyi Ma, Zaineb Aljumayaat, and Daniel Ritchie / PossibleImpossibles: Exploratory Procedural Design of Impossible Structures

repeatable and the final representation is clear. Creating grammar
that begins with visual bridges and progressively incorporates new
elements is a feasible approach.

Furthermore, our artist notes that the current results effectively
depict impossible structures. However, the results are limited to
parametric variations. A richer narrative and more intricate design
are desirable. For example, the system could augment these struc-
tures by weaving in dynamic elements such as the growth of plants,
the construction of houses, and shifts in weather. The creation of
such detailed models is a time-intensive process, often spanning
several months. Currently, the structures do the most important
thing which is to create understandable impossible structures.

Appendix K: Generating Cycles in 3D space

In this section, we illustrate how our connecting algorithm, as in-
troduced in Section 5.3, can be adapted for generating randomized
cycles in 3D space. The algorithm takes an initial component, de-
noted as c0, from the procedural grammar and a specified number
of steps, denoted as s. Its output is a 3D cycle structure. It is im-
portant to note that c0 should have at least two distinct derivation
rules.

Starting with the initial component c0 we select two distinct pro-
duction rules and execute each rule for s steps. This process leads
to two sequences of components, and we cA and cB to denote the
ending components of two different derivations. Subsequently, we
employ our connecting algorithm to establish a 3D connection be-
tween cA and cB. As a result, we obtain a 3D structure in which cA
and cB are connected through the connecting algorithm. Addition-
ally, both cA and cB are connected to c0 as they are derived from it.
We have a cycle in 3D space.

submitted to EUROGRAPHICS 2024.


